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ABSTRACT

Modified release drug delivery systems (MRDDS) have been developed
using impractical, empirical, trial-and-error procedures that are
laborious, expensive, and sometimes ineffective. As a novel formulation
science tool, machine learning (ML) provides predictive modelling,
improved data analysis, and high-throughput formulation variable
optimisation. In this review, ML methods like supervised learning, deep
neural networks, kernel methods, and ensemble methods are used to
MRDDS design and development using experimental, computational, and
literature-based datasets. ML methods can predict formulation features
such drug release kinetics, polymer—drug interactions, solubility
augmentation, and long-term stability. Sustained release matrix tablets,
osmotic systems, and nanoparticulate formulations demonstrate that ML
methods improve prediction models and minimise experimental workload
in MRDDS. Generative models, reinforcement learning, and self-driving
laboratories are further ML approaches that can help rethink
autonomous formulation design and optimisation. Discussed are data
quality, feature selection, model interpretability, and regulatory
acceptability issues. This paper shows how machine learning may be used
to innovate and revolutionise modified release drug delivery system
design for a more timely, cost-effective, and scientifically based
pharmaceutical development strategy.

©2025 The authors
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1. INTRODUCTION:

1.1 Overview of Pharmaceutical Formulation
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unrestricted use, distribution, and reproduction in
any medium, as long as the original authors and
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and Its Importance

Drug formulation of drugs is a critical step in the
pharmaceutical development process that converts
active pharmaceutical ingredients (APIs) into
dosage forms that are therapeutically useful and
have desirable pharmacokinetic and
pharmacodynamic properties. The method of
formulation will affect how quickly and to what
extent the drug is absorbed, its stability and
bioavailability, and whether and to what degree the
patient adheres to the therapy. Within the scope of
drug delivery innovations, we see the advent of a
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modified-release drug delivery system (MRDDS),
it is a system that releases drugs at predetermined
rates, maintains plasma concentrations of drugs in
the therapeutic range, and decreases dosing
frequency and adverse events!. The MRDDS can
contain sophisticated matrices, polymers, and
excipients to deliver controlled, prolonged or
targeted drugs. To create an efficacious
formulation, the bioavailability of a drug depends
on the drugs physicochemical characteristics of the
drugs and the behaviour of the excipients along
with additional factors that lie with the process
conditions and in vivo biological milieu.
Accordingly, an appropriate formulation that
considers these factors into consideration, is
paramount to ensure that laboratory therapeutics
become viable therapeutics in the clinical and
socially accepted sense in relation to efficacy,
safety, and commercial viability?.

1.2 Challenge
Development

The traditional formulation development process
requires an empirical, trial and error process that
relies heavily on in vitro and in vivo studies with
several iterations. The ultimate trial and error
process requires significant resource allotment and
typically entails creating hundreds of trial batches
to reach an optimized formulation. In the case of
MRDDS, the situation is even more complex due to
many variables directly affecting drug release
kinetics--the type of polymer, viscosity, drug:
polymer ratio, and the thickness of the coating are
among those affecting the release behaviour.
Predicting the consequences of excipient API
interactions leads to unpredictable performance,

of Traditional Formulation

stability, and development costs for the
formulation. Barriers to the optimization of
formulations include a limited mechanistic
understanding of  formulation  behaviour,
fragmented data, and irreproducibility.
Conventional statistical approaches, including

Design of Experiments (DoE) and Response
Surface Methodology (RSM), provide useful
information but do not adequately account for the
non-linear, multi-dimensional interactions that
drive drug release characteristics(3).

1.3 Advancing to Computational and Data-
Driven Methods

Computational approaches are often used in
pharmaceutical science to mitigate the restrictions
posed by these methods. Molecular dynamics
simulations, quantitative structure-property
relationships (QSPR), and computational fluid
dynamics (CFD) have developed novel frameworks
to predict processes relevant to drug solubility,
diffusion, and polymer behaviour. A limitation of
physics-based models is that they often require
significant computational resources and, even so,
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predictive mechanistic assumptions limit their use
when novel products or processes include complex
interactions. With greater access to high-throughput
screening data or ever-advancing digitalization and
data storage, the pharmaceutical landscape is also
recognizing the transition to data-driven modelling
- often better termed data-rich modelling - to better
understand hidden relationships among components
of the formulation and the metrics of performance.
The digital convergence of formulation science has
created an ecosystem where artificial intelligence
(Al) and machine learning (ML) predication and

automated formulation design, reduce the
experimental burden and promote
reproducibility(4).

1.4 The Contribution of Machine Learning (ML)
in Pharmaceutical Sciences

Machine learning, which is a subfield of artificial
intelligence provides the computers with the ability
to learn from the data and in some cases to make
predictions or decisions  without explicit
programming for it. In pharmaceutical sciences,
machine learning has been utilized in several
aspects of drug development, such as drug
discovery, target identification, toxicity prediction,
and formulation development. Insofar as drug
delivery is concerned, a machine learning
algorithm might be used to predict complicated
non-linear relationships between variables in a
formulation (e.g., polymer concentration, pH,
particle size) with regards to the output (e.g.,
release rate and bioavailability). Supervised
learning approaches such as random forests,
support vector machines, and neural networks have
proven to be very effective in predicting solubility
enhancement, stability prediction, and modeling
release kinetics(5). On the other hand, unsupervised
and deep learning provide tools for clustering,
feature extraction, and representation learning in
complex, multidimensional data sets. The use of
machine learning in formulation development
transforms experimental and empirical methods
into a data-driven approach based on enhanced
knowledge, and supports experimental planning,
facilitates optimal formulation design, and shortens
the time to market(6).

1.5 Machine Learning-Aided Modified Release

Formulation

The primary goal of this research is to develop ML-

aided models for MRDDS that will be predictive,

adaptive, and interpretable, and allow route-of-
administration dependent modeling with limited
experimental data(7). The study will:

1. Develop supervised and mixed machine
learning models to predict drug release kinetics
and stability profiles(8).

2. Feature  engineering
approaches are used

and
to

algorithmic
develop an
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understanding of what the formulation
components involved in the release
mechanisms(8).

3. Different silos of experimental, literature-

based, and computational data are combined to

produce robust, generalizable predictive
models(8).

Explainable AI methods can improve the

interpretability and regulatory compliance of

machine learning models(8).

5. Generative, reinforcement, and transfer
learning approaches have been used design
novel MRDDS formulations with improved
therapeutic efficacy(8).

Approaches enabled by Machine Learning (ML)
represent a novel and markedly disruptive
professional shift from traditional experimental
approaches to novel formulation creation. ML will
continue to enhance efficiencies, significant time
savings, cost savings, and improved product
performance while using predictive modelling that
adds reliability to sampling and then uses response
modelling to suggest potentially improved
formulations based on those modelling results.
Converging data science and pharmaceuticals will
change the way modified release drug delivery is
accomplished through automation, accuracy, and
innovation (9).

2. Foundations of Machine in
Pharmaceutical Formulation

Machine learning (ML) is the analytical foundation
of data-driven formulation science. Machine
learning algorithms can extract functional
relationships between formulation composition,
process parameters and critical quality attributes
(CQAs) like drug-release profiles or disintegration
time using experimental data. Unlike traditional
mechanistic information, machine learning can
accelerate the identification of nonlinear, high-
dimensional relationships, and provide predictions
for modified-release dosage forms (10).

Learning

2.1 Principles of Supervised and Unsupervised
Learning

In supervised learning, algorithms are trained on
labelled datasets that include input features (for
example, percentage of polymer, type of excipient,
compression pressure) that are related to the
outputs of interest (for example, percent medicine
released at time points of interest, dissolution rate
constants). The model can predict these outcomes
for new preparations it has not been trained on.

Commonly used supervised techniques in
formulation research include regression (to predict
continuous outcomes) and classification (for
example, “acceptable” or “non-acceptable”
dissolving). When Yang et al. (2019) applied
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supervised deep-learning algorithms to predict
disintegration time and cumulative release of oral
sustained-release tablets, they were over 80%
accurate(11).

Unsupervised learning captures the patterns in the
unlabelled data (i.e., the information is useful for
creating predictive models, but the model doesn't
realize that this information is present). Algorithms
such as Principal Component Analysis (PCA), k-
means clustering, and hierarchical clustering will
group formulations with similar release behaviours,
or similar patterns of variability. For example,
when PCA is applied to the excipient composition
data, we can determine which properties of the
polymers contribute the most to the dissolution, and
this can be used to select variables for the
supervised models(12).

2.2 Comparative Analysis of Machine Learning
and Molecular Modelling Techniques

While rational formulation development is
facilitated by machine learning and molecular
modelling, the two paradigms have fundamental
bases. Molecular modelling (molecular dynamics,
quantum  chemistry, docking, coarse-grained
simulations) is mechanistic because it explicitly
defines atomic relationships imposed by physical
laws. These models can rigorously explain
microscopic behaviours, such as hydrogen bonding
between drugs and polymers, or the dynamics of
hydration in excipients. The major advantages of
mechanistic models are their interpretability and
physics based accuracy and limitations are
computational, as they can only be run on small
systems(13).

In contrast, machine learning was built on data. It
picturesquely identifies relationships between
formulation quality attributes, or composition, and
macroscopic qualities of the observation, one does
not have to resolve against a physical equation as
the model is trained on data drawn from the
underlying behaviours for the observable property
and builds relationships through processing
thousands of sample formulations. Machine
learning efficiently scales to 1000's of trial
formulations allowing for rapid predictions of bulk
characteristics such as drug release profiles,
hardness, or stability.

Some approaches presently track both thinking to
couple paradigms into hybrid workflows e.g
molecular descriptors (log P, topological polar
surface area, rotatable bonds count) calculated from
molecular modelling are provided to machine
learning regressors to predict dissolution or
permeability. Thus, adapting an atomistic
understanding of events to a formulation relevant
effectiveness (14).
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2.3 Categories of Machine Learning Algorithms
Applicable to Pharmaceutics

The following are the classes of algorithms
commonly used in formulation-related research,
and comments regarding their applicability,
advantages, and disadvantages(15).

2.3.1 Linear and Nonlinear Regression Models
Initial applications included Multiple Linear
Regression (MLR) and Partial Least Squares
Regression (PLSR) to measure the impact of
formulation =~ components on  drug-release
characteristics. MLR posits a linear relationship
between predictors and response; although
interpretable, it oversimplifies intricate breakdown
behaviour.

PLSR mitigates multicollinearity by transforming
data into latent components, while maintaining a
linear framework. Polynomial regression or
nonlinear least-squares fitting can effectively model
curvature in nonlinear responses; however, they
frequently require manual feature engineering and
pose a risk of overfitting with limited datasets(16).
2.3.2 Tree-Based Models (Random Forest, Gradient
Boosting)

Tree-based ensembles, including Random Forest
(RF) and Gradient Boosting Machines (GBM,
XGBoost, and LightGBM), are highly effective for
structured tabular data prevalent in formulation
science. Random Forest constructs numerous
decision trees utilizing random subsets of data and
features; ensemble averaging reduces overfitting
and offers internal assessments of feature
significance, which is beneficial for pinpointing
Critical Material Attributes (CMAs) and Critical
Process Parameters (CPPs) within the Quality-by-
Design (QbD) paradigm. Gradient boosting
incrementally builds trees that rectify prior
residuals and frequently attains superior predictive
accuracy at the expense of interpretability. These
models have exhibited superior efficacy in
forecasting dissolution timepoints and discerning
predominant excipient factors(17).

2.3.3 Kernel Techniques (Support Vector
Machines, Gaussian Process Regression)

Support Vector Machines (SVM) and Gaussian
Process Regression (GPR) employ kernel functions
to transform inputs into high-dimensional feature
spaces. They are effective for small to medium-
sized datasets and have been utilized to classify
formulation success or predict release processes.
GPR provides probabilistic forecasts, delivering
mean estimates and confidence intervals beneficial
for decision-making under regulatory oversight,
where the quantification of uncertainty is crucial.
Nonetheless, the computing expense increases
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cubically with the size of the dataset, hence
limiting Gaussian Process Regression to smaller
model datasets unless approximations are
utilized(18).

2.3.4 Deep Learning Architectures (Artificial
Neural Networks, Convolutional Neural
Networks, Recurrent Neural Networks)

Deep learning techniques epitomize the cutting
edge of machine learning in pharmaceuticals.
Artificial Neural Networks (ANNSs), consisting of
interconnected layers of neurones, approximate
nonlinear relationships between the inputs and
outputs. Augmenting the number of hidden layers
produces Deep Neural Networks (DNNs) proficient
in hierarchical feature extraction.

Convolutional Neural Networks (CNNs) are
proficient in analyzing spatially organized data,
such as microscopy or near-infrared imaging of
tablet surfaces, as they discern localized patterns
associated with porosity or coating uniformity.
Recurrent Neural Networks (RNNs), particularly
Long Short-Term Memory (LSTM) units,
effectively  capture temporal  dependencies,
rendering them suitable for modelling time-series

dissolution  data  and  real-time  process
analytics(19).

2.4 Software Tools and Computational
Frameworks (Scikit-learn, TensorFlow,
PyTorch)

The deployment of machine learning models in
pharmaceuticals has been demonstrated using
robust open-source ecosystems. Scikit-learn
(Python) offers standardized interfaces for classical
methods, including regression, classification,
clustering, and model validation, and has been
extensively utilized in comparative machine-
learning studies for formulation prediction.
TensorFlow (Google Brain) and PyTorch (Meta Al)
are prominent in deep-learning research, providing
GPU acceleration, automatic differentiation, and
adaptability for developing intricate neural
structures. Keras, constructed using TensorFlow,
simplifies the network architecture through
intuitive APIs designed for pharmaceutical
scientists unfamiliar with programming. Deep
Learning, employed by Yang et al. (2019), interacts
effortlessly with enterprise settings for extensive

deployment. The computational toolkit was
augmented by the supporting packages: NumPy,
pandas, Matplotlib, and Optuna for hyper-

parameter tuning. These frameworks facilitate
reproducible modelling, hyper-parameter
optimization, and visualization of learning
behaviour, thus expediting the implementation of
machine learning in both academic and industry
formulation laboratories(20).



Journal of Molecular Science

Volume 35 Issue 4, Year of Publication 2025, Page 1436-1454

Journal of Molecular Science

2.5 Importance of Interpretability and
Explainability of Machine Learning Models

Although prediction accuracy is essential,
interpretability and explainability dictate the
scientific and regulatory acceptability of machine

learning models in pharmaceuticals.

Regulatory agencies, such as the FDA and EMA
assert that data-driven models must be
comprehensible, auditable, and congruent with
mechanistic understanding to adhere to Quality by
Design guidelines. Black-box models, particularly
deep neural networks, frequently exhibit a
deficiency in transparency concerning the impact of
certain formulation factors on predictions. To
address this, post-hoc interpretability approaches
are utilized: feature-importance analysis evaluates
the influence of specific formulation factors (e.g.,
polymer concentration or tablet hardness) on
anticipated results. SHAP (Shapley Additive
Explanations) and LIME (Local Interpretable
Model-agnostic ~ Explanations) offer localised
interpretations by assessing the contribution of each
variable to a specific prediction. Partial-dependence
graphs illustrate the impact of variations in a single
feature on the expected response, with the other
features held constant. These interpretability
frameworks enable scientists to confirm that
model-identified essential elements correspond to
established physicochemical principles, thereby
enhancing confidence among formulators and
regulators. Interpretable machine learning models
not only provide predictions but also elucidate the
reasons behind the success or failure of specific
formulations, thereby connecting data science with
domain expertise, an essential requirement for its

incorporation into regulated pharmaceutical
processes(21).
3.0 Data-Centric workflow for model

development

An effective machine learning model developed for
drug formulation, particularly modified release
systems, relies on the quality, representativeness,
and clarity of the data. The predicted accuracy and
generalizability of any ML-supported formulation
model are contingent upon the quality of the entire
workflow from data collection to model
interpretation. A data-focused paradigm ensures
that each step along the continuum, starting with
experimental design and ending with evaluation, is
improved to uncover important scientific
relationships rather than simply focusing on model
sophistication. The following sections provide a
thorough presentation of the step that comprise a
scientifically robust, data-driven approach to
formulation consistent with the Scopus-indexed
publications standards(22).
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3.1 Data Acquisition Strategies

3.1.1 Experimental Data Generation

The generation of experimental data underpins the
domain of ML-assisted drug formulations.
Modified release drug delivery systems (MRDDS)
should have comprehensive studies completed in
the laboratory to assess drug release in the system,
solubility, encapsulation efficiency, particle size
and modeling, zeta potential and stability, and
biopharmaceutical properties under controlled
experimental conditions that can be controlled. The
experimental data were generated through testing
methods such as, but not limited to, USP
dissolution studies, HPLC- analysis, or dynamic
light scattering.

The experimental data should also include a variety
of formulation compositions, processing factors,
and experimental conditions to allow the
generalization of ML prediction models. Recently,
advances in automation, including high-throughput
testing and robotics in laboratories, have
significantly improved data reproducibility and
throughput. Automated workflows reduce human
error, ensure controlled conditions throughout the
experiment, and can interface with iterative fast
cycles of experimentation guided by machine-
learning models(23).

3.1.2 Literature and Database Mining

Because of the significant expense and time
required for experimental data, the literature and
database mining are important additional sources.
Data may be found in published journal articles,
patents, as well as on the Internet in several curated
repositories, such as PubChem, DrugBank,
ChEMBL, and the Open Reaction Database. Text-
mining and natural language processing (NLP)
tools can automate the extraction of quantitative
characteristics, including solubility, release rates,
and polymer ratios, from the scientific literature.
These datasets can be combined in meta-analyses
that combine the learnings across studies, providing
a larger and more diverse training dataset.
Nonetheless, heterogeneity in data owning to
different experimental arrangements and reporting
formats remains a challenge. Data standardisation
must be performed using unit standardization,
normalization, and outlier detection, prior to
machine learning pipeline inclusion(24).

3.2 Data Preparation and Curation

Data preparation is the process of transforming raw,
experimental, and crawled data into a clean and
structured  machine-readable  format.  These
numerical features may need to be normalized
using some methods such as min-max
normalization or z-score normalization, so there is
a level playing field when training the model.
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Likewise, for categorical features such as excipient
type or formulation method, one-hot or label
encoding methods must be used. Statistical
thresholds for outlier detection or forests isolation
will be useful for removing anomalous data points
that affect model learning. If the data are very
small, then an enhancement or augmentation of the
data, for instance through interpolation of release
profiles or simulation, may be useful. Careful
curation is important for reproducibility and
ensures that ML models can learn actual
formulation-performance relationships rather than
relationships induced by random noise(25).

3.3 Selection and Engineering of Features for
Formulation Variables

Feature selection and engineering are crucial for a
good representation of the formulation system in
machine-learning modelling. Feature selection and
engineering are related to how to express the
chemical, physical, and process variables are
expressed as numerical or categorical variables that
the algorithm can understand(26).

3.3.1 Physicochemical Characteristics of Active
Pharmaceutical Ingredients

API-related characteristics are determined by
molecular structure and physical properties, which
govern solubility, permeability, and release
kinetics. Typical descriptors included molecular
weight, LogP (lipophilicity), pKa, melting point,
polar surface area, counts of hydrogen bond
donors/acceptors, and topological indices. These
characteristics can  be  evaluated  with
cheminformatics software such as RDKit or direct
novel empirical measurements. The attributes of
excipients within modified release formulations,
such as crystallinity, particle size distributions, and
kinetics of diffusion in polymer matrices, are
particularly important. Feature correlation analysis
serves to adjust descriptors and remove
redundancy, and will help improve both the
interpretability and efficiency of models(27).

3.3.2 Function of Excipients, Polymers, and
Surfactants

Excipients are important aspects of consideration in
MRDDS as they will modulate the release of the
drug, stability of the drug, and mechanical integrity
of the system.

Excipients can be defined by their attributes which
could include the type of polymer (i.e., HPMC,
Eudragit, PVP), molar mass, the viscosity grade,
the solubility parameter, the glass transition
temperature (Tg), and the hydrophobicity index.
The ratios of the drug to excipient or the multiple
excipients can be captured as designed variables,
such as the drug-to-polymer ratio or as an
interaction term in the composite factor. The
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characteristics of surfactants (like hydrophilic-
lipophilic balance (HLB), and critical micelle
concentration (CMC)) can be very important in
formulations that use emulsions final products or
use a lipid dosage form product (lipids being part
of a complete formulation). It is also important to
remember that categorical factors based on
formulations need to be encoded appropriately, and
there will be an opportunity to improve chemical
descriptors by alternative representation of
molecular  structures, either as molecular
fingerprints or aspects of graph representations
methods(28).

3.4 Model Training and Evaluation

3.4.1 Data Partitioning and Cross-Validation
Once a curated dataset is acquired, it must be
divided into training, validation, and test sets to
evaluate the model's performance fairly. A common
division might be 70% training, 15% validation,
and 15% testing; however, this depends on the size
of the dataset and its application. For smaller
datasets, k-fold cross-validation (typically k=5 or
10) is recommended to achieve stability in the
evaluation and reduce the variance that can arise
from random data partitioning. Stratified sampling
ensures that the labels are distributed as in original
data. External validation using new data that are
out of sample, for example from independent
testing or an independent API, establishes
credibility in the model. Nested cross-validation
allows the optimization of hyperparameters while
avoiding data leakage(29).

3.4.2 Optimisation of Hyperparameters
Hyperparameters dictate model behaviour and
require rigorous optimization for  optimal
performance. Hyperparameter search algorithms,
such as grid or random search, and Bayesian
optimization, are extensively used in machine-
learning pipelines in the drug development.
Adjusting the number of trees in a Random Forest,
kernel function in Support Vector Regression or
learning rate and depth in Gradient Boosting
Machines, can have a meaningful impact on or
predictive performance. A hyperparameter search
that is grounded in cross-validation ensures that
generalisation and overfitting are accounted for.
AutoML frameworks, such as Optuna and
Hyperopt, can automate such practices to create
reproducible optimization(30).

3.5 Model Evaluation Metrics (R?, RMSE, MAE,
Accuracy, Precision, Recall)

The performance must be gantifyied to allow trust
in the predictions must be conducted. For
regression problems such as the prediction of drug
release rate, solubility, and stability, the common
metrics of quality are given by the coefficient of
determination (R?), mean absolute error (MAE),
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and root mean square error (RMSE). In general, a
high R? and low error values indicate that the
predictive model worked well, while both good
predictions and robustness were achieved. In
classification concerns -for example, classifying
formulations as  “ideal,” “suboptimal,” or
“unstable” - accuracy, precision, and recall, as well
as the Fl-score and area under the ROC curve
(AUC), are standard accuracy measures. The
ensemble of these metrics can be interpreted
together to assess distinctions between categories,
as well as the correctness of the predictions. There
are also graphical methods of assessments (e.g.,
parity plots, learning curves, and residual
distributions) that may provide deeper insight into
predictive behaviour, as well as potential bias(31).

3.6 Interpretability for Understanding Feature
Importance

The interpretability of the machine learning model
embraces the link between prediction and scientific
understanding. The purpose of feature importance
capturing is to understand which input parameter(s)
have a fluctuating effect on output prediction, while
also allowing insights into formulation behaviours.
A Random Forest model suggests that the polymer
molecular weight and drug-to-polymer ratio are the
most influential factors in the release rate. To
quantify feature importance, permutation methods,
Shapley Additive Explanations (SHAP) and partial
dependence plots (PDP) can be utilized. These
tools allow the conversion of statistical correlations
into understandable scientific trends that can help
formulation scientists make informed decisions
regarding data. Explainable Al (XAI) techniques
are particularly useful in regulated industries (such
as pharma) where transparency is a requirement.
Furthermore, the interpretations made can guide
hypothesis generation and enhance the confidence
of researchers in creating new combinations of
excipients or new processing conditions. Hence,
interpreting a model is not a simple validation

stage; it changes machine learning from a
prediction tool to a mechanism to explore
mechanisms and intelligently design
formulations(32).

4.0 Applications of Machine Learning in the
Development of Drug Delivery Systems

4.1 Traditional Oral Dosage Form

4.1.1 Early Work on Artificial Neural Networks
The first studies utilizing machine learning (ML) in
the manufacturing of oral dosage forms were
initiated in the 1990s and focused on the use of
artificial neural networks (ANNs) to correlate
product performance attributes with formulation
composition and processing parameters.
Nevertheless, these studies are innovative in
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demonstrating the value of data-driven models to
capture complex and nonlinear relationships
between the ratio of excipients, compression force,
and product properties to enhance the quality of the
traditional designs of experiments (DoE) approach.
In most of the first findings, the data datasets were
small, and were limited in their validation
approaches, but demonstrated the potential of ML
to accelerate the screening of formulations and the
design of experiments by producing the
benchmarking capability of ranked formulations to
support laboratory investigation(33).

4.1.2 Forecasting of disintegration, dissolution,
and friability

Subsequent research broadened the application of
machine learning to forecast essential tablet quality
characteristics, including disintegration time,
dissolving profiles, tensile strength, and friability.
Models, including feedforward neural networks and
tree-based ensembles, have been trained using
combinations of API descriptors, excipient
composition (percent w/w), and process parameters
(milling time, compression force). In situations
where datasets and validation were robust, machine
learning models have provided accurate predictions
of dissolution kinetics and disintegration to enable
virtual screening of formulations ahead of
laboratory tests. These predictive capabilities are
useful when rapidly studying candidate
formulations, and identifying undesirable situations
early in development (e.g., poor compressibility or
too rapid disintegration), allowing for laboratory
efforts to be directed toward leads of high
probability(34).

4.2 Advanced oral formulations and adjustable
release systems

4.2.1 Sustained-release matrix tablets

Sustained release matrix tablets require careful
optimization of the type of polymer, grade of
polymer, amount of drug, and processing
conditions to yield the target drug release kinetics.
Machine learning underpinnings (tree-based
ensembles and neural networks) have been
developed to predict release parameters (e.g.,
percentage released at certain times and release rate
constants) based on these factors. Feature
importance and sensitivity analyses commonly
indicate that the molecular weight of the polymer,
the ratio of drug-to-polymer ratios, and the porosity
of the matrix are important. When applied wisely
through suitable API segmentation and prospective
validation, machine learning has been utilized to
suggest formulations that achieve target release
windows while reducing experimental trials, and to
clarify nonintuitive connections among formulation
variables(35).

4.2.2 Push-pull osmotic pump mechanisms
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Push—pull osmotic pumps exemplify a uniquely
mechanistic modified release method, wherein
membrane characteristics, core configuration,
osmotic agent concentration, and manufacturing
tolerances determine the efficacy. Data-driven
methodologies have employed machine learning to
forecast the combinations of osmogen, membrane
composition, and core design will achieve the
required zero-order or controlled release profiles.
In this area of research, hybrid methods that
combine mechanistic descriptors (such as
permeability approximations from models) and
machine learning descriptors usually outperform
models that are purely empirical because they rely
on established mass-transfer physics, but at the
same time handle manufacturing variability and
formulation specifics(36).
4.2.3 Microemulsions and
Complexes

Microemulsions (lipid-based systems), and host-
guest complexes (cyclodextrin inclusion) have
elements of composition and physicochemical
properties that lend themselves quite well to
machine learning. Models have been used to
predict solubilization efficacy, phase behaviour
domains, particle size, and complexation constants
based on excipient properties (HLB, chain length,
polarity) and API descriptors. Additionally,
efficient screening with machine learning has
helped prioritize surfactant/co-surfactant ratios and
concentrations for experimental tests, as well as
discover cyclodextrin—guest pairs that have an
increased probability of enhancing  aqueous
solubility or stability(37).

Cyclodextrin

4.3 Machine Learning for IVIVC (In-vitro—In-
vivo connection) Modelling

IVIVC is a valuable yet complex application of
machine learning because it necessitates the
connection of in vitro dissolution/release profiles
with pharmacokinetic consequences in vivo.
Machine learning methodologies have integrated
comprehensive in vitro release profiles, formulation
characteristics, dosage data, and subject/study
metadata to forecast plasma concentration—time
trajectories ~or  summary  pharmacokinetic
parameters (Cmax, Tmax, AUC). Successful
modelling has clearly indicated that the process of
curating of the dataset, consideration of relevant
features for the study, and validation (e.g., leave-
one-API-out or external prospective validation) is
important. Once predictive performance is
established, ML-based in vitro-in vivo prediction
can mitigate animal use and direct formulation
decision- making in the preclinical phase; however,
regulatory approval does 'require some level of
transparency and mechanistic basis(38).

4.4 Predictive modelling for solid dispersions
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and active pharmaceutical ingredient solubility
Solid dispersions and solubility-enhancing methods
are key examples of note for machine learning,
where important outcomes (physical stability,
crystallization propensity, improved dissolution)
will be a function of multiple interdependent
molecular and formulation variables. Machine
learning  models which include chemical
descriptors (such as changes in glass transition and
hydrogen bonding affinity), polymer attributes, and
processing have been used to predict the stability
and effectiveness of dissolved and solid
dispersions. Solubility prediction models can also
include excipient and solvent attributes to predict
which excipients (hydrotropes, cyclodextrins,
surfactants) and formulation conditions will
facilitate API solubility. Prediction can be helpful
in constraining the experimental space of stable
formulations of ASD(39).

4.5 The Role of Machine Learning in Optimising
Polymer Ratios and Excipient Interactions

Optimizing polymer ratios and excipient-API
interactions is one of the main objectives of
MRDDS design; machine learning provides
predictive and interpretive approaches to facilitate
this process. Based on the assessment of multi-
factor datasets, machine learning algorithms can

assess synergistic or antagonistic interactions
among  excipients (e.g., plasticizer-polymer
interactions or surfactant-drug micellar

solubilization) and determine an appropriate drug-
to-polymer ratio to achieve the desired release
kinetics. Other feature attribution approaches (e.g.
SHAP, partial dependence plots) permit researchers
to take model outputs and convert them into
chemical and physical type insights about which
excipient characteristics (e.g., molecular weight,
Tg, hydrophobicity) will affect the modulation of
release. In addition, uncertainty estimation can be
employed with machine learning (e.g. Gaussian
processes, ensembles) to while accounting for
uncertainty, prioritizing the formulations that
optimize the predicted performance and mitigates
risk, and indicating the solutions (potential
formulations) through active learning to narrow
down the areas of formulation space that need
clarification. In summary, machine learning
provides added value to excipient selection and
ratio optimisation by turning existing and future
data into predictive solutions that can be practically
verified experimentally in the laboratory (40).

5. Machine Learning Amended Development of
Proteins and Biopharmaceuticals

Machine learning (ML) is a revolutionary tool for
the  development of  protein-based  and
biopharmaceutical products that involve molecular
complexity, concern stability, and exposure of
proteins to environmental and processing
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parameters. Traditional formulation approaches
often rely on laborious empirical screening of
formulations to evaluate stabilizing excipients
and/or appropriate processing conditions, leading to
lengthy and resource intensive development cycles.
By mining historical data to observe stability
trends, aggregation trends and release behaviour
under solicited and changing conditions, machine
learning models can predict variables that derive
from protein sequences, protein structures, and
excipient properties. Regardless of the ML methods
presented in peer reviewed and indexed in Scopus
literature, as ML is increasingly featured in
decision trees and other methods used in data
driven decision making, which enhances
formulation robustness and reduces development
timeliness and experimental redundancy(41).

5.1 Challenges Associated with Protein Stability
and Delivery

In terms of structural complexity, large molecular
size, and conformational fragility, proteins and
peptides are entirely different from those of small
molecule drugs in Table 1. They are subjected to
myriad degradation pathways, such as aggregation,
deamidation, oxidation, hydrolysis, and
denaturation due to environmental conditions (e.g.
temperature, pH, ionic strength and mechanical
disturbance). Obtaining conformational stability
during manufacturing, storage, and administration
is a major challenge. Conventional stabilization
methods rely on combing different combinations of
buffers, cryoprotectants, surfactants and polymers
during the experimental phase and are often based
on a limited mechanistic understanding of protein
degradation pathways. Furthermore, the delivery of
therapeutic proteins will require a dedicated carrier
system (e.g., polymeric microparticles, liposomes
or hydrogels) to ensure a defined release while
preserving biological activity. The multifactorial
dependencies make protein formulation a difficult
optimization problem that is well suited to machine
learning modelling that can incorporate additional
non-linear and multi-dimensional factors and
interactions among formulation parameters and
stability outcomes(42).

5.2 Neural Network Models for Predicting
Thermal and Aggregation Stability

Artificial neural networks (ANNs) and deep
learning systems have shown great effectiveness in
predicting the thermal and aggregation stabilities of
proteins. Modeling techniques that utilize datasets
of physicochemical descriptors based on sequence
data (e.g. amino acid composition, hydrophobicity,
propensity for secondary structure) combined with
formulation variables (e.g., excipient type,
excipient concentration, pH, buffering system) can
be useful in predicting the melting temperature
(Tm), aggregation onset, and turbidity. Multi-layer
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perceptron (MLP), convolutional neural networks
(CNN), and recurrent neural networks (RNN) have
all been developed to characterize the relationships
between sequence and stability. Deep learning
algorithms can learn and extract features from both
the primary and tertiary structures of proteins and
connect these features to formulation performance
metrics. Several papers in the literature indicate
that models that incorporate descriptors related to
excipient properties (e.g., osmolyte concentration,
surfactant class, polymer hydrophobicity) increase
predictive power and allow more efficient virtual
screening of potential stabilizing components
before experimental work is  undertaken.
Conceptually, interpretable machine learning
methods (e.g., SHAP and attention models) allow
some degree of identification of residues or
excipient descriptors that promote stability and
create bridges between data-driven predictions and
mechanistic reasoning(42).

5.3 Machine Learning Prediction of Long-Term
Stability Under Variable Conditions

The prediction of long-term stability in Table 1 is a
highly beneficial, yet challenging application of
machine learning in protein  composition.
Experimental stability testing under both real-time
and accelerated settings may require months or
years; however, machine learning models can
significantly shorten this duration by predicting the
degrading behaviour with minimal early stage data.
Regression models, such as Random Forests,
Gradient Boosting, and Gaussian Process
Regression, have been reliably trained on
accelerated stability datasets, demonstrating the
effects of temperature, relative humidity, and pH on
potency and aggregation(43). Time-series models,
such as Long Short-Term Memory (LSTM)
networks, have been applied to generate long-term
stability profiles from short-term observations, thus
providing early detection of potential instability or
aggregation risk. The utility of the feature
importance from these models continue to show
that environmental factors and formulation
ingredients (e.g., buffer capacity and surfactant
concentrations) are primary predictors of stability.
With uncertainty quantification, these models can
provide probabilistic confidence intervals around
predictions, thereby increasing their applicability to
risk-based decision making for the
biopharmaceutical development cycle. This means
that predictive stability modelling based on
machine learning, helped to unambiguously
identify the most stable formulations earlier in the
development cycle, decreasing formulation
optimization time, costs, and R&D resources(44).

5.4 Conjugation to Polymeric Microparticles for
Sustained Protein Delivery
Controlled delivery of proteins using polymeric
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microparticles, principally poly(lactic-co-glycolic
acid) (PLGA), is an advanced field, and machine
learning will greatly assist in design and
optimization. These systems must balance the
encapsulation efficiency, release kinetics, and
structural viability of the protein antigens in
biodegradable polymer systems. Machine learning
models can develop predictions for encapsulation
efficiency, burst release, and sustained-release
profiles based on the polymer molecular weight,
lactide ratio, solvent type, emulsifier concentration,
and the physicochemical characteristics of the
protein. Random  Forests, Support Vector
Regression, and Deep Neural Networks have
demonstrated exceptional capabilities for modelling
these datasets, exposing non-linear relationships
lost in conventional regression techniques. Feature

Dol-10.004687/1000-9035.2025.188

importance analysis often indicates polymer
hydrophobicity, end-capping state, and protein
isoelectric point are primary determinants of
release behaviour. Hybrid mechanistic-machine
learning models, which integrate diffusion or
degradation  equations as  physics-informed
restrictions, augment predictive reliability. The
knowledge generated by these model(s) allow for
accurate formulation design and formulators to
select polymer—protein combinations that result in
the desired release and still maintain biological
activity. As a result, ML-based approaches hasten
the translation of sustained-release protein
therapies from an experimental idea to a clinical
reality, representing the merging of data science
and advanced drug delivery technologies(45).

Table 1 Machine Learnin

Assisted Development of Protein and Biopharmaceutical Formulations

Sr Aspect Description ML Techniques Applications / Advantages Reference
No Used Examples
1 Protein Stability Predicts degradation, Supervised Predicting Reduces experimental | (46)
Prediction aggregation, or learning, thermostability or | screening, accelerates
denaturation of Regression models, | aggregation stability optimization
proteins under Random Forest, hotspots
different conditions. Neural Networks
2 Formulation Determines optimal Bayesian Predicts ideal Minimizes trial-and- (47)
Component excipients, pH, and Optimization, buffer systems and | error in formulation
Optimization buffer conditions for Decision Trees excipient design
stable formulations. concentrations
3 Protein Excipient | Models molecular Deep Learning, Predicts Improves (48)
Interaction interactions between Molecular compatibility of compatibility and
Modeling protein and stabilizers | Dynamics + ML, surfactants or prevents denaturation
or adjuvants. Graph Neural sugars
Networks
4 High- Analyzes large Clustering, Classifies stable Extracts meaningful (49)
Throughput datasets from Dimensionality vs unstable patterns from large
Screening Data automated Reduction (PCA, t- | formulations datasets
Analysis formulation SNE)
experiments.
5 Predicting Estimates Support Vector Predicts solution Prevents issues during | (50)
Aggregation and | formulation viscosity | Machines (SVM), behavior during manufacturing and
Viscosity and protein ANN storage storage
aggregation
propensity.
6 Accelerated Uses ML to Time-Series Predicts shelf-life Speeds up stability 51
Stability Testing | extrapolate long-term | Models, Regression | and degradation assessment and
stability from short- kinetics reduces cost
term data.
7 Protein Links 3D protein CNNg, Identifies Enhances (52)
Structure structure features Autoencoders structure- understanding of
Formulation with formulation dependent structure—stability
Relationship behavior. formulation relationship
Analysis sensitivity
8 Quality by Integrates ML in Reinforcement Predicts critical Ensures regulatory (53)
Design (QbD) QbD workflows for Learning, quality attributes compliance and
Integration design space Predictive (CQAs) and product consistency
identification. Modeling process
parameters
9 Process Real-time monitoring | Machine Vision, Detects anomalies | Improves (54)
Monitoring and of formulation and Predictive or contamination manufacturing
Control filling processes. Maintenance efficiency and safety
Models
10 Data Integration Combines multi- Multi-modal ML, Correlates Enables holistic (55)
and Knowledge omics, formulation, Data Fusion biological data biopharmaceutical
Discovery and process data for with formulation development
insight generation. performance

6.0 Machine Learning in Microparticle and
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In recent years, there has been a significant increase
in the utilization of machine learning (ML) for the
design of micro - and nano-scaled drug delivery
systems.  These systems including polymeric
microspheres, polymeric nanoparticles, and lipid
nanoparticles (LNPs) demonstrate intricate,
multivariate formulation-performance correlations
that are challenging to optimize experimentally.
Machine learning techniques provide a data-driven
approach to correlate formulation parameters with
essential  performance  metrics,  including
encapsulation efficiency (EE), drug loading (DL),
and drug-release kinetics(56).

6.1 Analysis of polymeric and lipid-based
nano/micro systems

Poly(lactic-co-glycolic ~ acid) (PLGA) and
analogous biodegradable polyesters are the most
extensively studied carriers for continuous release.
Singh et al. (2021) concluded that factors such as
polymer molecular weight, lactide: glycolide ratio,
and end-group chemistry significantly affect the
breakdown rate and release dynamics(57). Simon
et al. (2021) and Li et al. (2019) reached analogous
conclusions, highlighting the synergistic impact of
the particle size and polymer composition on
diffusion-controlled release. Lipid nanoparticles
(LNPs) and solid lipid nanoparticles (SLNs) have
concurrently emerged for the transport of mRNA,
siRNA, and poorly soluble small molecules(58).

6.2 Predictive Models for Release Kinetics and
Encapsulation Efficiency

The primary machine learning objectives in
nanoparticle formulation are (i) to predict
encapsulation efficiency and drug loading in Table
2, and (ii) to simulate cumulative drug release(59).
Hosni et al. (2025) conducted a thorough analysis
of machine learning algorithms in nanoparticle
research, revealing that Random Forests (RF) and
Gradient Boosting Machines (GBMs) generally
achieve good accuracy (R? = 0.75 - 0.9) with few
data prerequisites. They emphasized that
incorporating physically relevant descriptors, such
as particle size, polymer molecular weight, and
drug log P enhanced model generalization(60).
Yang et al. (2021) illustrated that deep neural
networks (DNNs) surpassed traditional models,
including multiple linear regression (MLR),
support-vector machines (SVM), and random
forests (RF), to predict multi-time-point dissolution
profiles of sustained-release tablets, attaining over
80% accuracy, and introducing the Maximum-
Dissimilarity-Function for Intelligent Splitting
(MD-FIS) algorithm to mitigate data leakage(61).
Their methodological breakthroughs are currently
being used in nanoformulations, which are
characterized by limited data and significant
correlations across characteristics. Seegobin et al.
(2024) utilized ensemble learning, namely cubist
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regression and RF models, to forecast protein
release from PLGA microspheres in microsphere
systems, attaining an R? of approximately 0.69 and
validating the significant influences of polymer
molecular weight, lactic: glycolic ratio, and drug
solubility(62). Subsequent studies by Sivadasan et
al. (2021) expanded similar methodologies to
hybrid polymeric-lipid particles, demonstrating that
the incorporation of process characteristics (e.g.,
emulsification speed and solvent evaporation rate)
enhanced the prediction of both encapsulation
efficiency and release profiles(63).

6.3 Case Studies: Microspheres and Lipid
Nanoparticles from PLGA

Zawbaa et al. (2016) initiated machine learning
modelling of macromolecule release from PLGA
microspheres using a well-maintained dataset of
166 formulations. The authors evaluated nine
methods and determined that RF had the highest
prediction accuracy, and identified significant
factors affecting burst release(64). Maksimenko et
al. (2019) utilised Gaussian Process Regression
(GPR) to model doxorubicin-loaded PLGA
particles, employing the model's uncertainty
quantification to inform fresh experimental trials,
which serves as a prelude to closed-loop
experimental design(65). Maharajan et al. (2024)
and associates developed an extensive LNP dataset
comprising several formulations and utilized
XGBoost and GPR to forecast mRNA
encapsulation and in vitro efficacy. The feature-
importance analysis indicated that the microfluidic
flow-rate ratio and the percentage of ionizable
lipids were the most significant factors(66). In a
separate study, Correia et al. (2023) combined the
design-of-experiments (DoE) with artificial neural
networks (ANNs) to enhance curcumin-loaded
solid lipid nanoparticles (SLNs), attaining 93%
encapsulation efficiency while reducing
experimental runs by 40% compared to traditional
DoE methods. Together, these investigations
together illustrate that machine learning can
proficiently  identify = nonlinear  parameter
relationships ~ that  govern  particle  size,
encapsulation efficiency, and release kinetics,
attributes that would often necessitate substantial
empirical optimization(67).

6.4 Model Optimization by Feature Selection
Algorithms

Feature selection is crucial for improving the model
resilience and interpretability in datasets with

numerous  associated formulation  variables.
Filtering techniques were Ge et al. (2021)
introduced a comprehensive Fisher - RFE -

Logistic (FRL) framework that amalgamates Fisher
score ranking, recursive feature elimination (RFE),
and logistic regression for biomedical datasets.
This method swiftly removes superfluous variables
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in formulation science, preserving only those with
the highest predictive significance(68). Wrapper
and embedded techniques by Figueroa Barraza et
al. (2021) integrated internal feature selection by
assessing  DNN  sensitivity  coefficients(69),
whereas Wang et al. (2022) employed (Recursive
Feature Elimination with Cross-Validation) RFECV
in conjunction with RF to determine the five
principal variables (particle size, polymer ratio,
surfactant concentration, stirring speed, and solvent
type) that account for 85% of EE variance(70).
Evolutionary algorithms, Sarmah et al. (2020)
examined the application of genetic algorithms
(GA) and particle-swarm optimisation (PSO) for
hyperparameter tuning and variable selection in
pharmaceutical machine learning pipelines,
demonstrating enhancements in prediction accuracy
ranging from 5% to 15% compared to manual
selection. These methods collectively boost
performance and offer mechanistic understanding
by identifying the variables that most significantly
influence encapsulation or release behavior(71).

6.5 Comparative Examination of Model
Precision and Overfitting Mitigation

Deep architectures, as demonstrated by Emami et
al. (2024) can provide enhanced predictive
accuracy, especially for multi-output tasks such as
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whole release curves yet necessitate larger datasets
and rigorous regularization.  Gaussian-process
models provide valuable uncertainty quantification
for regulatory filings. Owing to the relatively small
size of formulation datasets (fewer than 200 items)
and their frequent imbalance, it is imperative to
meticulously test model generalisation(72). Hoseini
et al. (2025) addressed this issue using the MD-FIS
technique to generate realistic train/test splits(73).
Vanek et al. (2017) advocated for layered cross-
validation and dropout regularisation in deep neural
networks(74), whereas Pan et al. (2025) highlighted
the need for ensemble averaging and data
augmentation via physics-constrained
simulations(75). Researchers are increasingly
utilising explainability tools, such as SHAP
(Shapley additive explanations) and partial-
dependence plots, to identify spurious correlations.
The assessment criteria, that is RMSE, MAE, and
R2, continue to be conventional metrics; however,
Liu et al. (1997) proposed the similarity factor f as
a pertinent criterion for evaluating anticipated and
experimental dissolution patterns in
pharmaceuticals(76). This  criteria  was
subsequently adopted by subsequent research
(Stevens et al., 2015) to evaluate release-profile
predictions(77).

Table 2 Machine Learning Applications in Microparticle and Nanoparticle Drug Delivery Systems

Sr Category Key Focus Area Machine Learning Case Examples Benefits Reference
No Methods
1 Particle Prediction of particle Regression models, Predicting Enables precise (78)
Engineering size, morphology, and | Random Forest, nanoparticle control of
surface charge during | Neural Networks diameter and zeta delivery profile
synthesis potential from and targeting
formulation inputs efficiency
2 Formulation Optimization of Bayesian Designing PLGA or | Reduces (79)
Design polymer, surfactant, Optimization, chitosan experimental
and solvent ratios Decision Trees, nanoparticles with iterations and
Genetic Algorithms high encapsulation improves
reproducibility
3 Encapsulation and | Estimation of drug Artificial Neural Predicting Enhances (80)
Drug Loading entrapment efficiency | Networks (ANN), encapsulation stability and
and loading capacity Linear Regression, efficiency for maximizes
Support Vector liposomes and payload
Machines polymeric carriers
4 Controlled Drug Predicting release Support Vector Modeling sustained | Saves time and (81)
Release Modeling | kinetics and diffusion | Regression, Random release of peptide- supports
profiles Forest, Deep Learning | loaded nanoparticles | formulation
scaling
5 Stability and Evaluation of long- Ensemble Learning, Predicting Accelerates shelf- | (82)
Storage Prediction | term physicochemical | Time-Series Models aggregation and life determination
stability crystallization in and reduces waste
stored formulations
6 Targeting and Prediction of tissue Deep Neural Modeling Improves (83)
Delivery targeting, bio- Networks, Graph nanoparticle delivery precision
Efficiency distribution, and Neural Networks, penetration across and reduces oft-
uptake efficiency Reinforcement the blood—brain target effects
Learning barrier
7 Safety and Assessment of QSAR Models, Predicting toxicity Reduces in vivo (84)
Toxicity Profiling | cytotoxicity, Classification of metal or testing and
immunogenicity, and Algorithms, Deep polymeric enhances patient
hemocompatibility Learning nanoparticles safety
8 Process Correlation of Gaussian Process Optimizing spray Ensures batch-to- | (85)
Optimization and manufacturing Regression, DoE + drying or batch consistency
Scale-Up parameters with final ML emulsification and scalability
product quality conditions
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9 Image-Based Automated particle Convolutional Neural Automated analysis | Improves (86)
Characterization analysis using Networks (CNN), of SEM/TEM accuracy and
imaging data Image Recognition images for speed of quality
morphology assessment
10 Intelligent Integration of ML for | Multi-modal Deep Al-guided design of | Enables precision | (87)
Nanomedicine smart and Learning, patient-specific therapy and
Design personalized delivery | Reinforcement nanocarriers predictive
systems Learning formulation
design
7. Further Development of Autonomous innovative formulations with better medication

Laboratories and Formulating Design

The development of machine-learning (ML)-
augmented models for modified release drug
delivery system (MRDDS) design represents a
significant advancement in pharmaceutical science.
This model allows for advanced computational
methods to optimize formulation methodologies,
resulting in increased delivery efficacy and patient
adherence experiences(88).

7.1 Automation and
Experimentation

The automation of MRDDS formulation involves
the utilization of robotic systems, alongside
analytically automated instruments to perform
high-throughput studies. These tools provide rapid
generation and assessment of multiple formulation
variables, such as excipient combinations and
processing methodologies. By methodically
altering parameters and gathering comprehensive
data, researchers can more effectively uncover
optimal formulations compared to conventional
methods(89).

High-Throughput

7.2 The Intersection of Bayesian DL and
Reinforcement Learning

Bayesian deep learning offers a probabilistic
framework to define uncertainty in prediction,
which is useful in the complex context of MRDDS.
Its use, in conjunction with reinforcement learning
(RL), can allow adaptive decision making to be
established in experimental design. RL algorithms
learn optimal formulation techniques from
interactions with the environment, feedback from
RL algorithms, and accordingly update models. The
combination of these models can provide new
formulations that are optimized for release profiles,
stability, and manufacturability(90).

7.3 Generative Models & Discovery of New
Formulation Spaces

Generative models, such as generative adversarial
networks (GANs) and variational autoencoders
(VAEs), are often used to explore new formulation
spaces because generative models may be able to
identify new combinations of excipients and
relevant processing parameters that might not have
been previously considered. By simply learning
from existing data, generative models can generate
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release properties(91).

7.4 Active Learning in Intelligent Experimental
Design

Active learning (AL) is an approach in which the
model determines which experiments would be the
most informative to pursue next. In the context of
MRDDS, it can be used to identify formulation
variants that yield the greatest insight into the
relationship between formulation factors and drug
release behaviours. This approach reduces the
number of experiments recquired, saving time and
resources while accelerating the delivery of
optimized formulations.

The use of machine learning approaches in the
design of modified release drug delivery systems is
a groundbreaking step in pharmaceutical
development. It enables researchers to design and
optimize formulations that achieve specified
therapeutic goals in an efficient manner through
automation, probabilistic modelling, generative
design and intelligent experimental design(92).

8. Challenges, and Future
Perspectives

The development of ML-enabled models to
develop MRDDS presents great promise, but it
involves many challenges and limitations that
warrant careful consideration , as shown in Figure

1.

Limitations,

8.1 Lack of Data and Reproducibility Issues

Machine learning approaches rely on a large
amount of high-quality data that can be used to
predict drug release properties and formulate
optimizations. However, data related to MRDDS
experiments are moderately limited owing to the
financial costs, complexity, and time required to
conduct formulation studies. If limited, the lack of
data may affect predictive machine learning model
overfitting, the ability for model generalizability,
and decrease the reproducibility of research
findings from laboratory to laboratory. Examples of
other variabilities that exacerbate reproducibility
include the raw characteristics of the materials,
laboratory conditions, and experimental protocols.
Not only do these limitations affect transferable
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generalizability but also limit the overall robustness
of machine learning predictions(93).

8.2 Transfer Learning and Minimal Data
Solutions

To respond to a lack of data, transfer learning and
other minimal data solutions are being increasingly
used in pharmaceutical machine learning. Transfer
learning takes advantage of information from
similar formulations or datasets to enhance the
predictions of new formulations based on limited
experimental data(94).

8.3 Call for Standardisation and Open Access
Formulation Databases

One of the primary barriers to the development of
ML-based MRDDS is the inconsistent reporting of
datasets and the lack of publicly available
databases of formulation information being
publicly available. Non-standardized reporting of
formulation parameters, testing procedures, and
metrics similarly hinders the repeatability and
comparability of machine learning studies. A
centralized , curated and standardized database of
formulations would allow the pharmaceutical
community to develop richer models and facilitate
drug delivery system innovation(95).

8.4 Ethical Issues and Transparency of the
Model

Machine-learning models will help inform
important  resource  allocations in  drug
development, it is important to consider the ethics.
Predictive model transparency, interpretability, and
explainability are important factors for compliance
and confidence in  Al-based decisions.
Nontransparent models that cannot transparently
justify their predictions have implications for
patient safety, regulatory approval, and the
scientific methods. There is a need for advanced
explainable methodologies for Al to ensure
accountability and informed decision-making in
MRDDS development(96).
8.5 Interdisciplinary in
Pharmaceutical AI Research

The successful implementation of machine learning
in MRDDS will require productive
interdisciplinary cooperation among
pharmaceutical scientists, formulation chemists,
data scientists, and regulatory scientists. Integrative
knowledge, which is area knowledge combined
with substantial computational methods to develop
machine learning models, promotes both
mathematical rigor and contemporary relevance to
the field. Interdisciplinary cooperation also support
the design of pragmatic, effective, and safe
formulations through a liaison between predictions
made using computational methods and their
applications in the pharmaceutical industry(96).

Cooperation
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Data Scarcity & Reproducibility issues
1. Limited Datasets
2, Experiment Variability

)

Figure 1 Key Challenges and Strategic Solutions in Machine
Learning—Assisted Biopharmaceutical Development.

9.0 DISCUSSION:

A comprehensive data-driven framework was
employed to utilize empirical experimentation and
predictive modeling to improve the drug delivery
design process using information learned from a
thorough literature review of the scientific
community's use of machine learning for drug
design. The literature reviews provided insight into
the limitations associated with the traditional trial
and error approach to formulating drugs, as well as
insight into the ability of applying machine
learning techniques to model complex, non-linear
relationships that help to control the rate of release
of drugs from different modified release delivery
systems. The original research articles also
provided direction to researchers on how to
systematically create data to support their empirical
findings, how to determine which variables were
relevant to formulating their drug product, and how
to create a dataset containing dissolution
experiment data for their new drug product. The
studies presented here also provided insight into
appropriate methods for partitioning datasets and
highlighted the importance of validation of models
to demonstrate robustness and generalizability,
while preventing overfitting, particularly when
working with limited pharmaceutical datasets.
Studies comparing several different algorithms
have demonstrated that the performance of
advanced  machine-learning  algorithms  in
predicting drug release is generally superior to both
classical kinetic and statistical models; thus, it will
assist in selecting the appropriate algorithms to use
in this current project. Additionally, an important
aspect of past research was the necessity of directly
comparing actual experimental drug release
profiles with those generated from model-
prediction outputs using standardised method
performance metrics to support the predictive
significance of the method. Overall, the
information from both the review articles and the
research articles included in this work will provide

assistance in  guiding future  formulation
developments toward creating an integrated
experimental computational framework that
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improves prediction quality, supports rational
formulation optimisation, reduces the amount of
time needed to develop formulations, and provides
valuable information to decision makers involved
in design and manufacture of modified drug
delivery systems as noted in the relevant published
literature.

10. CONCLUSION:

Over the past ten years, significant advancements
have occurred in the incorporation of machine
learning (ML) and artificial intelligence (Al) into
pharmaceutical  formulation research. From
rudimentary statistical models to advanced deep-
learning frameworks, these technologies have
proven capable of precisely forecasting dissolution
kinetics, optimizing excipient proportions, and
engineering  controlled-release  systems  with
unparalleled efficacies. Data-driven techniques
have transformed formulation development from
empirical trial-and-error to predictive, model-
informed experimentation consistent with quality-
by-design (QbD) and regulatory standards. The
evolving paradigm for data-centric pharmaceutical
development highlights the establishment of
interoperable formulation databases, transparent
and interpretable machine learning models, and the
seamless integration of computational predictions
with automated laboratory equipment. In the
coming years, advancements in deep learning,
transfer learning, and digital twins are anticipated
to facilitate the real-time optimization of modified-
release drug systems, whereby the design,
simulation, and manufacturing function
synergistically within an Al-enabled framework.
Ultimately, machine learning-driven formulation
science is set to transform pharmaceutical
innovation, enabling expedited, intelligent, and
more sustainable production of personalized,
modified-release therapies.
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