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ABSTRACT 
Modified release drug delivery systems (MRDDS) have been developed 

using impractical, empirical, trial-and-error procedures that are 

laborious, expensive, and sometimes ineffective. As a novel formulation 

science tool, machine learning (ML) provides predictive modelling, 

improved data analysis, and high-throughput formulation variable 

optimisation. In this review, ML methods like supervised learning, deep 

neural networks, kernel methods, and ensemble methods are used to 

MRDDS design and development using experimental, computational, and 

literature-based datasets. ML methods can predict formulation features 

such drug release kinetics, polymer–drug interactions, solubility 

augmentation, and long-term stability. Sustained release matrix tablets, 

osmotic systems, and nanoparticulate formulations demonstrate that ML 

methods improve prediction models and minimise experimental workload 

in MRDDS. Generative models, reinforcement learning, and self-driving 

laboratories are further ML approaches that can help rethink 

autonomous formulation design and optimisation. Discussed are data 

quality, feature selection, model interpretability, and regulatory 

acceptability issues. This paper shows how machine learning may be used 

to innovate and revolutionise modified release drug delivery system 

design for a more timely, cost-effective, and scientifically based 

pharmaceutical development strategy. 
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1. INTRODUCTION: 
1.1 Overview of Pharmaceutical Formulation 

and Its Importance  

Drug formulation of drugs is a critical step in the 

pharmaceutical development process that converts 

active pharmaceutical ingredients (APIs) into 

dosage forms that are therapeutically useful and 

have desirable pharmacokinetic and 

pharmacodynamic properties. The method of 

formulation will affect how quickly and to what 

extent the drug is absorbed, its stability and  

bioavailability, and whether and to what degree the 

patient adheres to the therapy. Within the scope of 

drug delivery innovations, we see the advent of a 
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modified-release drug delivery system (MRDDS), 

it is a system that releases drugs at predetermined 

rates, maintains plasma concentrations of drugs in 

the therapeutic range, and decreases dosing 

frequency and adverse events1. The MRDDS can 

contain sophisticated matrices, polymers, and 

excipients to deliver controlled, prolonged or 

targeted drugs. To create an efficacious 

formulation, the bioavailability of a drug depends 

on the drugs physicochemical characteristics of the 

drugs and the behaviour of the excipients along 

with additional factors that lie with the process 

conditions and in vivo biological milieu. 

Accordingly, an appropriate formulation that 

considers these factors into consideration, is 

paramount to ensure that laboratory therapeutics 

become viable therapeutics in the clinical and 

socially accepted sense in relation to efficacy, 

safety, and commercial viability2. 

 

1.2 Challenge of Traditional Formulation 

Development  

The traditional formulation development process 

requires an empirical, trial and error process that 

relies heavily on in vitro and in vivo studies with 

several iterations. The ultimate trial and error 

process requires significant resource allotment and 

typically entails creating hundreds of trial batches 

to reach an optimized formulation. In the case of 

MRDDS, the situation is even more complex due to 

many variables directly affecting drug release 

kinetics--the type of polymer, viscosity, drug: 

polymer ratio, and the thickness of the coating are 

among those affecting the release behaviour. 

Predicting the consequences of excipient API 

interactions leads to unpredictable performance, 

stability, and development costs for the 

formulation. Barriers to the optimization of 

formulations include a limited mechanistic 

understanding of formulation behaviour, 

fragmented data, and irreproducibility. 

Conventional statistical approaches, including 

Design of Experiments (DoE) and Response 

Surface Methodology (RSM), provide useful 

information but do not adequately account for the 

non-linear, multi-dimensional interactions that 

drive drug release characteristics(3). 

 

1.3 Advancing to Computational and Data-

Driven Methods  

Computational approaches are often used in 

pharmaceutical science to mitigate the restrictions 

posed by these methods. Molecular dynamics 

simulations, quantitative structure-property 

relationships (QSPR), and computational fluid 

dynamics (CFD) have developed novel frameworks 

to predict processes relevant to drug solubility, 

diffusion, and polymer behaviour. A limitation of 

physics-based models is that they often require 

significant computational resources and, even so, 

predictive mechanistic assumptions limit their use 

when novel products or processes include complex 

interactions. With greater access to high-throughput 

screening data or ever-advancing digitalization and 

data storage, the pharmaceutical landscape is also 

recognizing the transition to data-driven modelling 

- often better termed data-rich modelling - to better 

understand hidden relationships among components 

of the formulation and the metrics of performance. 

The digital convergence of formulation science has 

created an ecosystem where artificial intelligence 

(AI) and machine learning (ML) predication and 

automated formulation design, reduce the 

experimental burden and promote 

reproducibility(4). 

 

1.4 The Contribution of Machine Learning (ML) 

in Pharmaceutical Sciences 

Machine learning, which is a subfield of artificial 

intelligence provides the computers with the ability 

to learn from the data and in some cases to make 

predictions or decisions without explicit 

programming for it. In pharmaceutical sciences, 

machine learning has been utilized in several 

aspects of drug development, such as drug 

discovery, target identification, toxicity prediction, 

and formulation development. Insofar as drug 

delivery is concerned, a machine learning 

algorithm might be used to predict complicated 

non-linear relationships between variables in a 

formulation (e.g., polymer concentration, pH, 

particle size) with regards to the output (e.g., 

release rate and bioavailability). Supervised 

learning approaches such as random forests, 

support vector machines, and neural networks have 

proven to be very effective in predicting solubility 

enhancement, stability prediction, and modeling 

release kinetics(5). On the other hand, unsupervised 

and deep learning provide tools for clustering, 

feature extraction, and representation learning in 

complex, multidimensional data sets. The use of 

machine learning in formulation development 

transforms experimental and empirical methods 

into a data-driven approach based on enhanced 

knowledge, and supports experimental planning, 

facilitates optimal formulation design, and shortens 

the time to market(6). 

 

1.5 Machine Learning-Aided Modified Release 

Formulation 

The primary goal of this research is to develop ML-

aided models for MRDDS that will be predictive, 

adaptive, and interpretable, and allow route-of-

administration dependent modeling with limited 

experimental data(7). The study will: 

1. Develop supervised and mixed machine 

learning models to predict drug release kinetics 

and stability profiles(8). 

2. Feature engineering and algorithmic 

approaches are used to develop an 
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understanding of what the formulation 

components involved in the release 

mechanisms(8). 

3. Different silos of experimental, literature-

based, and computational data are combined to 

produce robust, generalizable predictive 

models(8). 

4. Explainable AI methods can improve the 

interpretability and regulatory compliance of 

machine learning models(8). 

5. Generative, reinforcement, and transfer 

learning approaches have been used design 

novel MRDDS formulations with improved 

therapeutic efficacy(8).  

 

Approaches enabled by Machine Learning (ML) 

represent a novel and markedly disruptive 

professional shift from traditional experimental 

approaches to novel formulation creation. ML will 

continue to enhance efficiencies, significant time 

savings, cost savings, and improved product 

performance while using predictive modelling that 

adds reliability to sampling and then uses response 

modelling to suggest potentially improved 

formulations based on those modelling results. 

Converging data science and pharmaceuticals will 

change the way modified release drug delivery is 

accomplished through automation, accuracy, and 

innovation (9). 

 

2. Foundations of Machine Learning in 

Pharmaceutical Formulation 

Machine learning (ML) is the analytical foundation 

of data-driven formulation science. Machine 

learning algorithms can extract functional 

relationships between formulation composition, 

process parameters and critical quality attributes 

(CQAs) like drug-release profiles or disintegration 

time using experimental data. Unlike traditional 

mechanistic information, machine learning can 

accelerate the identification of nonlinear, high-

dimensional relationships, and provide predictions 

for modified-release dosage forms (10). 

 

2.1 Principles of Supervised and Unsupervised 

Learning 

In supervised learning, algorithms are trained on 

labelled datasets that include input features (for 

example, percentage of polymer, type of excipient, 

compression pressure) that are related to the 

outputs of interest (for example, percent medicine 

released at time points of interest, dissolution rate 

constants). The model can predict these outcomes 

for new preparations it has not been trained on. 

 

Commonly used supervised techniques in 

formulation research include regression (to predict 

continuous outcomes) and classification (for 

example, “acceptable” or “non-acceptable” 

dissolving). When Yang et al. (2019) applied 

supervised deep-learning algorithms to predict 

disintegration time and cumulative release of oral 

sustained-release tablets, they were over 80% 

accurate(11). 

 

Unsupervised learning captures the patterns in the 

unlabelled data (i.e., the information is useful for 

creating predictive models, but the model doesn't 

realize that this information is present). Algorithms 

such as Principal Component Analysis (PCA), k-

means clustering, and hierarchical clustering will 

group formulations with similar release behaviours, 

or similar patterns of variability. For example, 

when PCA is applied to the excipient composition 

data, we can determine which properties of the 

polymers contribute the most to the dissolution, and 

this can be used to select variables for the 

supervised models(12). 

 

2.2 Comparative Analysis of Machine Learning 

and Molecular Modelling Techniques 

While rational formulation development is 

facilitated by machine learning and molecular 

modelling, the two paradigms have fundamental 

bases. Molecular modelling (molecular dynamics, 

quantum chemistry, docking, coarse-grained 

simulations) is mechanistic because it explicitly 

defines atomic relationships imposed by physical 

laws. These models can rigorously explain 

microscopic behaviours, such as hydrogen bonding 

between drugs and polymers, or the dynamics of 

hydration in excipients. The major advantages of 

mechanistic models are their interpretability and 

physics based accuracy and limitations are 

computational, as they can only be run on small 

systems(13). 

 

In contrast, machine learning was built on data. It 

picturesquely identifies relationships between 

formulation quality attributes, or composition, and 

macroscopic qualities of the observation, one does 

not have to resolve against a physical equation as 

the model is trained on data drawn from the 

underlying behaviours for the observable property 

and builds relationships through processing 

thousands of sample formulations. Machine 

learning efficiently scales to 1000's of trial 

formulations allowing for rapid predictions of bulk 

characteristics such as drug release profiles, 

hardness, or stability.  

 

Some approaches presently track both thinking to 

couple paradigms into hybrid workflows e.g 

molecular descriptors (log P, topological polar 

surface area, rotatable bonds count) calculated from 

molecular modelling are provided to machine 

learning regressors to predict dissolution or 

permeability. Thus, adapting an atomistic 

understanding of events to a formulation relevant 

effectiveness (14). 
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2.3 Categories of Machine Learning Algorithms 

Applicable to Pharmaceutics  

The following are the classes of algorithms 

commonly used in formulation-related research, 

and comments regarding their applicability, 

advantages, and disadvantages(15). 

 

2.3.1 Linear and Nonlinear Regression Models 

Initial applications included Multiple Linear 

Regression (MLR) and Partial Least Squares 

Regression (PLSR) to measure the impact of 

formulation components on drug-release 

characteristics. MLR posits a linear relationship 

between predictors and response; although 

interpretable, it oversimplifies intricate breakdown 

behaviour.  

 

PLSR mitigates multicollinearity by transforming 

data into latent components, while maintaining a 

linear framework. Polynomial regression or 

nonlinear least-squares fitting can effectively model 

curvature in nonlinear responses; however, they 

frequently require manual feature engineering and 

pose a risk of overfitting with limited datasets(16). 

2.3.2 Tree-Based Models (Random Forest, Gradient 

Boosting) 

 

Tree-based ensembles, including Random Forest 

(RF) and Gradient Boosting Machines (GBM, 

XGBoost, and LightGBM), are highly effective for 

structured tabular data prevalent in formulation 

science. Random Forest constructs numerous 

decision trees utilizing random subsets of data and 

features; ensemble averaging reduces overfitting 

and offers internal assessments of feature 

significance, which is beneficial for pinpointing 

Critical Material Attributes (CMAs) and Critical 

Process Parameters (CPPs) within the Quality-by-

Design (QbD) paradigm. Gradient boosting 

incrementally builds trees that rectify prior 

residuals and frequently attains superior predictive 

accuracy at the expense of interpretability. These 

models have exhibited superior efficacy in 

forecasting dissolution timepoints and discerning 

predominant excipient factors(17). 

 

2.3.3 Kernel Techniques (Support Vector 

Machines, Gaussian Process Regression) 

Support Vector Machines (SVM) and Gaussian 

Process Regression (GPR) employ kernel functions 

to transform inputs into high-dimensional feature 

spaces. They are effective for small to medium-

sized datasets and have been utilized to classify 

formulation success or predict release processes. 

GPR provides probabilistic forecasts, delivering 

mean estimates and confidence intervals beneficial 

for decision-making under regulatory oversight, 

where the quantification of uncertainty is crucial. 

Nonetheless, the computing expense increases 

cubically with the size of the dataset, hence 

limiting Gaussian Process Regression to smaller 

model datasets unless approximations are 

utilized(18). 

 

 

2.3.4 Deep Learning Architectures (Artificial 

Neural Networks, Convolutional Neural 

Networks, Recurrent Neural Networks) 

Deep learning techniques epitomize the cutting 

edge of machine learning in pharmaceuticals. 

Artificial Neural Networks (ANNs), consisting of 

interconnected layers of neurones, approximate 

nonlinear relationships between the inputs and 

outputs.  Augmenting the number of hidden layers 

produces Deep Neural Networks (DNNs) proficient 

in hierarchical feature extraction. 

  

Convolutional Neural Networks (CNNs) are 

proficient in analyzing spatially organized data, 

such as microscopy or near-infrared imaging of 

tablet surfaces, as they discern localized patterns 

associated with porosity or coating uniformity. 

Recurrent Neural Networks (RNNs), particularly 

Long Short-Term Memory (LSTM) units, 

effectively capture temporal dependencies, 

rendering them suitable for modelling time-series 

dissolution data and real-time process 

analytics(19). 

 

2.4 Software Tools and Computational 

Frameworks (Scikit-learn, TensorFlow, 

PyTorch) 

The deployment of machine learning models in 

pharmaceuticals has been demonstrated using 

robust open-source ecosystems. Scikit-learn 

(Python) offers standardized interfaces for classical 

methods, including regression, classification, 

clustering, and model validation, and has been 

extensively utilized in comparative machine-

learning studies for formulation prediction. 

TensorFlow (Google Brain) and PyTorch (Meta AI) 

are prominent in deep-learning research, providing 

GPU acceleration, automatic differentiation, and 

adaptability for developing intricate neural 

structures. Keras, constructed using TensorFlow, 

simplifies the network architecture through 

intuitive APIs designed for pharmaceutical 

scientists unfamiliar with programming. Deep 

Learning, employed by Yang et al. (2019), interacts 

effortlessly with enterprise settings for extensive 

deployment. The computational toolkit was 

augmented by the supporting packages: NumPy, 

pandas, Matplotlib, and Optuna for hyper-

parameter tuning. These frameworks facilitate 

reproducible modelling, hyper-parameter 

optimization, and visualization of learning 

behaviour, thus expediting the implementation of 

machine learning in both academic and industry 

formulation laboratories(20). 
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2.5 Importance of Interpretability and 

Explainability of Machine Learning Models 

Although prediction accuracy is essential, 

interpretability and explainability dictate the 

scientific and regulatory acceptability of machine 

learning models in pharmaceuticals. 

 

Regulatory agencies, such as the FDA and EMA 

assert that data-driven models must be 

comprehensible, auditable, and congruent with 

mechanistic understanding to adhere to Quality by 

Design guidelines. Black-box models, particularly 

deep neural networks, frequently exhibit a 

deficiency in transparency concerning the impact of 

certain formulation factors on predictions.  To 

address this, post-hoc interpretability approaches 

are utilized: feature-importance analysis evaluates 

the influence of specific formulation factors (e.g., 

polymer concentration or tablet hardness) on 

anticipated results. SHAP (Shapley Additive 

Explanations) and LIME (Local Interpretable 

Model-agnostic Explanations) offer localised 

interpretations by assessing the contribution of each 

variable to a specific prediction. Partial-dependence 

graphs illustrate the impact of variations in a single 

feature on the expected response, with the other 

features held constant. These interpretability 

frameworks enable scientists to confirm that 

model-identified essential elements correspond to 

established physicochemical principles, thereby 

enhancing confidence among formulators and 

regulators. Interpretable machine learning models 

not only provide predictions but also elucidate the 

reasons behind the success or failure of specific 

formulations, thereby connecting data science with 

domain expertise, an essential requirement for its 

incorporation into regulated pharmaceutical 

processes(21). 

 

3.0 Data-Centric workflow for model 

development 

An effective machine learning model developed for 

drug formulation, particularly modified release 

systems, relies on the quality, representativeness, 

and clarity of the data. The predicted accuracy and 

generalizability of any ML-supported formulation 

model are contingent upon the quality of the entire 

workflow from data collection to model 

interpretation. A data-focused paradigm ensures 

that each step along the continuum, starting with 

experimental design and ending with evaluation, is 

improved to uncover important scientific 

relationships rather than simply focusing on model 

sophistication. The following sections provide a 

thorough presentation of the step that comprise a 

scientifically robust, data-driven approach to 

formulation consistent with the Scopus-indexed 

publications standards(22). 

 

3.1 Data Acquisition Strategies 

3.1.1 Experimental Data Generation 

The generation of experimental data underpins the 

domain of ML-assisted drug formulations. 

Modified release drug delivery systems (MRDDS) 

should have comprehensive studies completed in 

the laboratory to assess drug release in the system, 

solubility, encapsulation efficiency, particle size 

and modeling, zeta potential and stability, and 

biopharmaceutical properties under controlled 

experimental conditions that can be controlled. The 

experimental data were generated through testing 

methods such as, but not limited to, USP 

dissolution studies, HPLC- analysis, or dynamic 

light scattering.  

 

The experimental data should also include a variety 

of formulation compositions, processing factors, 

and experimental conditions to allow the 

generalization of ML prediction models.  Recently, 

advances in automation, including high-throughput 

testing and robotics in laboratories, have 

significantly improved data reproducibility and 

throughput. Automated workflows reduce human 

error, ensure controlled conditions throughout the 

experiment, and can interface with iterative fast 

cycles of experimentation guided by machine-

learning models(23). 

 

3.1.2 Literature and Database Mining  

Because of the significant expense and time 

required for experimental data, the literature and 

database mining are important additional sources.  

Data may be found in published journal articles, 

patents, as well as on the Internet in several curated 

repositories, such as PubChem, DrugBank, 

ChEMBL, and the Open Reaction Database. Text-

mining and natural language processing (NLP) 

tools can automate the extraction of quantitative 

characteristics, including solubility, release rates, 

and polymer ratios, from the scientific literature.  

These datasets can be combined in meta-analyses 

that combine the learnings across studies, providing 

a larger and more diverse training dataset. 

Nonetheless, heterogeneity in data owning to 

different experimental arrangements and reporting 

formats remains a challenge. Data standardisation 

must be performed using unit standardization, 

normalization, and outlier detection, prior to 

machine learning pipeline inclusion(24). 

 

 

3.2 Data Preparation and Curation 

Data preparation is the process of transforming raw, 

experimental, and crawled data into a clean and 

structured machine-readable format. These 

numerical features may need to be normalized 

using some methods such as min-max 

normalization or z-score normalization, so there is 

a level playing field when training the model. 
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Likewise, for categorical features such as excipient 

type or formulation method, one-hot or label 

encoding methods must be used. Statistical 

thresholds for outlier detection or forests isolation 

will be useful for removing anomalous data points 

that affect model learning. If the data are very 

small, then an enhancement or augmentation of the 

data, for instance through interpolation of release 

profiles or simulation, may be useful. Careful 

curation is important for reproducibility and 

ensures that ML models can learn actual 

formulation-performance relationships rather than 

relationships induced by random noise(25). 

 

3.3 Selection and Engineering of Features for 

Formulation Variables 

Feature selection and engineering are crucial for a 

good representation of the formulation system in 

machine-learning modelling. Feature selection and 

engineering are related to how to express the 

chemical, physical, and process variables are 

expressed as numerical or categorical variables that 

the algorithm can understand(26). 

 

3.3.1 Physicochemical Characteristics of Active 

Pharmaceutical Ingredients 

API-related characteristics are determined by 

molecular structure and physical properties, which 

govern solubility, permeability, and release 

kinetics.  Typical descriptors included  molecular 

weight, LogP (lipophilicity), pKa, melting point, 

polar surface area, counts of hydrogen bond 

donors/acceptors, and topological indices. These 

characteristics can be evaluated with 

cheminformatics software such as RDKit or direct 

novel empirical measurements.  The attributes of 

excipients within modified release formulations, 

such as crystallinity, particle size distributions, and 

kinetics of diffusion in polymer matrices, are 

particularly important.  Feature correlation analysis 

serves to adjust descriptors and remove 

redundancy, and will help improve both the 

interpretability and efficiency of models(27). 

 

3.3.2 Function of Excipients, Polymers, and 

Surfactants 

Excipients are important aspects of consideration in 

MRDDS as they will modulate the release of the 

drug, stability of the drug, and mechanical integrity 

of the system.   

 

Excipients can be defined by their attributes which 

could include the type of polymer (i.e., HPMC, 

Eudragit, PVP), molar mass, the viscosity grade, 

the solubility parameter, the glass transition 

temperature (Tg), and the hydrophobicity index.  

The ratios of the drug to excipient or the multiple 

excipients can be captured as designed variables, 

such as the drug-to-polymer ratio or as an 

interaction term in the composite factor. The 

characteristics of surfactants (like hydrophilic-

lipophilic balance (HLB), and critical micelle 

concentration (CMC)) can be very important in 

formulations that use emulsions final products or 

use a lipid dosage form product (lipids being part 

of a complete formulation).  It is also important to 

remember that categorical factors based on 

formulations need to be encoded appropriately, and 

there will be an opportunity to improve chemical 

descriptors by alternative representation of 

molecular structures, either as molecular 

fingerprints or aspects of graph representations 

methods(28). 

 

3.4 Model Training and Evaluation 

3.4.1 Data Partitioning and Cross-Validation 

Once a curated dataset is acquired, it must be 

divided into training, validation, and test sets to 

evaluate the model's performance fairly. A common 

division might be 70% training, 15% validation, 

and 15% testing; however, this depends on the size 

of the dataset and its application. For smaller 

datasets, k-fold cross-validation (typically k=5 or 

10) is recommended to achieve stability in the 

evaluation and reduce the variance that can arise 

from random data partitioning. Stratified sampling 

ensures that the labels are distributed as in original 

data. External validation using new data that are 

out of sample, for example from independent 

testing or an independent API, establishes 

credibility in the model. Nested cross-validation 

allows the optimization of hyperparameters while 

avoiding data leakage(29). 

 

3.4.2 Optimisation of Hyperparameters 

Hyperparameters dictate model behaviour and 

require rigorous optimization for optimal 

performance. Hyperparameter search algorithms, 

such as grid or random search, and Bayesian 

optimization, are extensively used in machine-

learning pipelines in the drug development. 

Adjusting the number of trees in a Random Forest, 

kernel function in Support Vector Regression or 

learning rate and depth in Gradient Boosting 

Machines, can have a meaningful impact on or 

predictive performance. A hyperparameter search 

that is grounded in cross-validation ensures that 

generalisation and overfitting are accounted for. 

AutoML frameworks, such as Optuna and 

Hyperopt, can automate such practices to create 

reproducible optimization(30). 

 

3.5 Model Evaluation Metrics (R², RMSE, MAE, 

Accuracy, Precision, Recall) 

The performance must be qantifyied to allow trust 

in the predictions must be conducted. For 

regression problems such as the prediction of drug 

release rate, solubility, and stability, the common 

metrics of quality are given by the coefficient of 

determination (R²), mean absolute error (MAE), 
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and root mean square error (RMSE). In general, a 

high R² and low error values indicate that the 

predictive model worked well, while both good 

predictions and robustness were achieved.  In 

classification concerns -for example, classifying 

formulations as “ideal,” “suboptimal,” or 

“unstable” - accuracy, precision, and recall, as well 

as the F1-score and area under the ROC curve 

(AUC), are standard accuracy measures. The 

ensemble of these metrics can be interpreted 

together to assess distinctions between categories, 

as well as the correctness of the predictions.  There 

are also graphical methods of assessments (e.g., 

parity plots, learning curves, and residual 

distributions) that may provide deeper insight into 

predictive behaviour, as well as potential bias(31). 

 

3.6 Interpretability for Understanding Feature 

Importance 

The interpretability of the machine learning model 

embraces the link between prediction and scientific 

understanding.  The purpose of feature importance 

capturing is to understand which input parameter(s) 

have a fluctuating effect on output prediction, while 

also allowing insights into formulation behaviours. 

A Random Forest model suggests that the polymer 

molecular weight and drug-to-polymer ratio are the 

most influential factors in the release rate. To 

quantify feature importance, permutation methods, 

Shapley Additive Explanations (SHAP) and partial 

dependence plots (PDP) can be utilized. These 

tools allow the conversion of statistical correlations 

into understandable scientific trends that can help 

formulation scientists make informed decisions 

regarding data. Explainable AI (XAI) techniques 

are particularly useful in regulated industries (such 

as pharma) where transparency is a requirement. 

Furthermore, the interpretations made can guide 

hypothesis generation and enhance the confidence 

of researchers in creating new combinations of 

excipients or new processing conditions. Hence, 

interpreting a model is not a simple validation 

stage; it changes machine learning from a 

prediction tool to a mechanism to explore 

mechanisms and intelligently design 

formulations(32). 

 

 

 

4.0 Applications of Machine Learning in the 

Development of Drug Delivery Systems 

4.1 Traditional Oral Dosage Form 

4.1.1 Early Work on Artificial Neural Networks 

The first studies utilizing machine learning (ML) in 

the manufacturing of oral dosage forms were 

initiated in the 1990s and focused on the use of 

artificial neural networks (ANNs) to correlate 

product performance attributes with formulation 

composition and processing parameters. 

Nevertheless, these studies are innovative in 

demonstrating the value of data-driven models to 

capture complex and nonlinear relationships 

between the ratio of excipients, compression force, 

and product properties to enhance the quality of the 

traditional designs of experiments (DoE) approach. 

In most of the first findings, the data datasets were 

small, and were limited in their validation 

approaches, but demonstrated the potential of ML 

to accelerate the screening of formulations and the 

design of experiments by producing the 

benchmarking capability of ranked formulations to 

support laboratory investigation(33). 

 

4.1.2 Forecasting of disintegration, dissolution, 

and friability 

Subsequent research broadened the application of 

machine learning to forecast essential tablet quality 

characteristics, including disintegration time, 

dissolving profiles, tensile strength, and friability. 

Models, including feedforward neural networks and 

tree-based ensembles, have been trained using 

combinations of API descriptors, excipient 

composition (percent w/w), and process parameters 

(milling time, compression force). In situations 

where datasets and validation were robust, machine 

learning models have provided accurate predictions 

of dissolution kinetics and disintegration to enable 

virtual screening of formulations ahead of 

laboratory tests. These predictive capabilities are 

useful when rapidly studying candidate 

formulations, and identifying undesirable situations 

early in development (e.g., poor compressibility or 

too rapid disintegration), allowing for laboratory 

efforts to be directed toward leads of high 

probability(34).  

 

4.2 Advanced oral formulations and adjustable 

release systems  

4.2.1 Sustained-release matrix tablets  

Sustained release matrix tablets require careful 

optimization of the type of polymer, grade of 

polymer, amount of drug, and processing 

conditions to yield the target drug release kinetics. 

Machine learning underpinnings (tree-based 

ensembles and neural networks) have been 

developed to predict release parameters (e.g., 

percentage released at certain times and release rate 

constants) based on these factors. Feature 

importance and sensitivity analyses commonly 

indicate that the molecular weight of the polymer, 

the ratio of drug-to-polymer ratios, and the porosity 

of the matrix are important. When applied wisely 

through suitable API segmentation and prospective 

validation, machine learning has been utilized to 

suggest formulations that achieve target release 

windows while reducing experimental trials, and to 

clarify nonintuitive connections among formulation 

variables(35). 

 

4.2.2 Push-pull osmotic pump mechanisms 
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Push–pull osmotic pumps exemplify a uniquely 

mechanistic modified release method, wherein 

membrane characteristics, core configuration, 

osmotic agent concentration, and manufacturing 

tolerances determine the efficacy. Data-driven 

methodologies have employed machine learning to 

forecast the combinations of osmogen, membrane 

composition, and core design will achieve the 

required zero-order or controlled release profiles. 

In this area of research, hybrid methods that 

combine mechanistic descriptors (such as 

permeability approximations from models) and 

machine learning descriptors usually outperform 

models that are purely empirical because they rely 

on established mass-transfer physics, but at the 

same time handle manufacturing variability and 

formulation specifics(36). 

 

4.2.3 Microemulsions and Cyclodextrin 

Complexes 

Microemulsions (lipid-based systems), and host-

guest complexes (cyclodextrin inclusion) have 

elements of composition and physicochemical 

properties that lend themselves quite well to 

machine learning. Models have been used to 

predict solubilization efficacy, phase behaviour 

domains, particle size, and complexation constants 

based on excipient properties (HLB, chain length, 

polarity) and API descriptors. Additionally, 

efficient screening with machine learning has 

helped prioritize surfactant/co-surfactant ratios and 

concentrations for experimental tests, as well as 

discover cyclodextrin–guest pairs that have an 

increased probability of enhancing  aqueous 

solubility or stability(37). 

 

4.3 Machine Learning for IVIVC (In-vitro–In-

vivo connection) Modelling  

IVIVC is a valuable yet complex application of 

machine learning because it necessitates the 

connection of in vitro dissolution/release profiles 

with pharmacokinetic consequences in vivo. 

Machine learning methodologies have integrated 

comprehensive in vitro release profiles, formulation 

characteristics, dosage data, and subject/study 

metadata to forecast plasma concentration–time 

trajectories or summary pharmacokinetic 

parameters (Cmax, Tmax, AUC). Successful 

modelling has clearly indicated that the process of 

curating of the dataset, consideration of relevant 

features for the study, and validation (e.g., leave-

one-API-out or external prospective validation) is 

important. Once predictive performance is 

established, ML-based in vitro-in vivo prediction 

can mitigate animal use and direct formulation 

decision- making in the preclinical phase; however, 

regulatory approval does 'require some level of 

transparency and mechanistic basis(38). 

 

4.4 Predictive modelling for solid dispersions 

and active pharmaceutical ingredient solubility 

Solid dispersions and solubility-enhancing methods 

are key examples of note for machine learning, 

where important outcomes (physical stability, 

crystallization propensity, improved dissolution) 

will be a function of multiple interdependent 

molecular and formulation variables. Machine 

learning models which include chemical 

descriptors (such as changes in glass transition and 

hydrogen bonding affinity), polymer attributes, and 

processing have been used to predict the stability 

and effectiveness of dissolved and solid 

dispersions. Solubility prediction models can also 

include excipient and solvent attributes to predict 

which excipients (hydrotropes, cyclodextrins, 

surfactants) and formulation conditions will 

facilitate API solubility. Prediction can be helpful 

in constraining the experimental space of stable 

formulations of ASD(39).   

 

4.5 The Role of Machine Learning in Optimising 

Polymer Ratios and Excipient Interactions 

Optimizing polymer ratios and excipient-API 

interactions is one of the main objectives of 

MRDDS design; machine learning provides 

predictive and interpretive approaches to facilitate 

this process. Based on the assessment of multi-

factor datasets, machine learning algorithms can 

assess synergistic or antagonistic interactions 

among excipients (e.g., plasticizer-polymer 

interactions or surfactant-drug micellar 

solubilization) and determine an appropriate drug-

to-polymer ratio to achieve the desired release 

kinetics. Other feature attribution approaches (e.g. 

SHAP, partial dependence plots) permit researchers 

to take model outputs and convert them into 

chemical and physical type insights about which 

excipient characteristics (e.g., molecular weight, 

Tg, hydrophobicity) will affect the modulation of 

release. In addition, uncertainty estimation can be 

employed with machine learning (e.g. Gaussian 

processes, ensembles) to while accounting for 

uncertainty, prioritizing the formulations that 

optimize the predicted performance and mitigates 

risk, and indicating the solutions (potential 

formulations) through active learning to narrow 

down the areas of formulation space that need 

clarification. In summary, machine learning 

provides added value to excipient selection and 

ratio optimisation by turning existing and future 

data into predictive solutions that can be practically 

verified experimentally in the laboratory (40).  

 

5. Machine Learning Amended Development of 

Proteins and Biopharmaceuticals  

Machine learning (ML) is a revolutionary tool for 

the development of protein-based and 

biopharmaceutical products that involve molecular 

complexity, concern stability, and exposure of 

proteins to environmental and processing 
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parameters. Traditional formulation approaches 

often rely on laborious empirical screening of 

formulations to evaluate stabilizing excipients 

and/or appropriate processing conditions, leading to 

lengthy and resource intensive development cycles. 

By mining historical data to observe stability 

trends, aggregation trends and release behaviour 

under solicited and changing conditions, machine 

learning models can predict variables that derive 

from protein sequences, protein structures, and 

excipient properties. Regardless of the ML methods 

presented in peer reviewed and indexed in Scopus 

literature, as ML is increasingly featured in 

decision trees and other methods used in data 

driven decision making, which enhances 

formulation robustness and reduces development 

timeliness and experimental redundancy(41). 

 

5.1 Challenges Associated with Protein Stability 

and Delivery  

In terms of structural complexity, large molecular 

size, and conformational fragility, proteins and 

peptides are entirely different from those of small 

molecule drugs in Table 1. They are subjected to 

myriad degradation pathways, such as aggregation, 

deamidation, oxidation, hydrolysis, and 

denaturation due to environmental conditions (e.g. 

temperature, pH, ionic strength and mechanical 

disturbance). Obtaining conformational stability 

during manufacturing, storage, and administration 

is a major challenge. Conventional stabilization 

methods rely on combing different combinations of 

buffers, cryoprotectants, surfactants and polymers 

during the experimental phase and are often based 

on a limited mechanistic understanding of protein 

degradation pathways. Furthermore, the delivery of 

therapeutic proteins will require a dedicated carrier 

system (e.g., polymeric microparticles, liposomes 

or hydrogels) to ensure a defined release while 

preserving biological activity. The multifactorial 

dependencies make protein formulation a difficult 

optimization problem that is well suited to machine 

learning modelling that can incorporate additional 

non-linear and multi-dimensional factors and 

interactions among formulation parameters and 

stability outcomes(42). 

 

5.2 Neural Network Models for Predicting 

Thermal and Aggregation Stability 

Artificial neural networks (ANNs) and deep 

learning systems have shown great effectiveness in 

predicting the thermal and aggregation stabilities of 

proteins. Modeling techniques that utilize datasets 

of physicochemical descriptors based on sequence 

data (e.g. amino acid composition, hydrophobicity, 

propensity for secondary structure) combined with 

formulation variables (e.g., excipient type, 

excipient concentration, pH, buffering system) can 

be useful in predicting the melting temperature 

(Tm), aggregation onset, and turbidity. Multi-layer 

perceptron (MLP), convolutional neural networks 

(CNN), and recurrent neural networks (RNN) have 

all been developed to characterize the relationships 

between sequence and stability. Deep learning 

algorithms can learn and extract features from both 

the primary and tertiary structures of proteins and 

connect these features to formulation performance 

metrics. Several papers in the literature indicate 

that models that incorporate descriptors related to 

excipient properties (e.g., osmolyte concentration, 

surfactant class, polymer hydrophobicity) increase 

predictive power and allow more efficient virtual 

screening of potential stabilizing components 

before experimental work is undertaken. 

Conceptually, interpretable machine learning 

methods (e.g., SHAP and attention models) allow 

some degree of identification of residues or 

excipient descriptors that promote stability and 

create bridges between data-driven predictions and 

mechanistic reasoning(42). 

 

5.3 Machine Learning Prediction of Long-Term 

Stability Under Variable Conditions 

The prediction of long-term stability in Table 1 is a 

highly beneficial, yet challenging application of 

machine learning in protein composition. 

Experimental stability testing under both real-time 

and accelerated settings may require months or 

years; however, machine learning models can 

significantly shorten this duration by predicting the 

degrading behaviour with minimal early stage data. 

Regression models, such as Random Forests, 

Gradient Boosting, and Gaussian Process 

Regression, have been reliably trained on 

accelerated stability datasets, demonstrating the 

effects of temperature, relative humidity, and pH on 

potency and aggregation(43). Time-series models, 

such as Long Short-Term Memory (LSTM) 

networks, have been applied to generate long-term 

stability profiles from short-term observations, thus 

providing early detection of potential instability or 

aggregation risk. The utility of the feature 

importance from these models continue to show 

that environmental factors and formulation 

ingredients (e.g., buffer capacity and surfactant 

concentrations) are primary predictors of stability. 

With uncertainty quantification, these models can 

provide probabilistic confidence intervals around 

predictions, thereby increasing their applicability to 

risk-based decision making for the 

biopharmaceutical development cycle. This means 

that predictive stability modelling based on 

machine learning, helped to unambiguously 

identify the most stable formulations earlier in the 

development cycle, decreasing formulation 

optimization time, costs, and R&D resources(44). 

 

5.4 Conjugation to Polymeric Microparticles for 

Sustained Protein Delivery 

Controlled delivery of proteins using polymeric 
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microparticles, principally poly(lactic-co-glycolic 

acid) (PLGA), is an advanced field, and machine 

learning will greatly assist in design and 

optimization. These systems must balance the 

encapsulation efficiency, release kinetics, and 

structural viability of the protein antigens in 

biodegradable polymer systems. Machine learning 

models can develop predictions for encapsulation 

efficiency, burst release, and sustained-release 

profiles based on the polymer molecular weight, 

lactide ratio, solvent type, emulsifier concentration, 

and the physicochemical characteristics of the 

protein. Random Forests, Support Vector 

Regression, and Deep Neural Networks have 

demonstrated exceptional capabilities for modelling 

these datasets, exposing non-linear relationships 

lost in conventional regression techniques. Feature 

importance analysis often indicates polymer 

hydrophobicity, end-capping state, and protein 

isoelectric point are primary determinants of 

release behaviour. Hybrid mechanistic–machine 

learning models, which integrate diffusion or 

degradation equations as physics-informed 

restrictions, augment predictive reliability. The 

knowledge generated by these model(s) allow for 

accurate formulation design and formulators to 

select polymer–protein combinations that result in 

the desired release and still maintain biological 

activity. As a result, ML-based approaches hasten 

the translation of sustained-release protein 

therapies from an experimental idea to a clinical 

reality, representing the merging of data science 

and advanced drug delivery technologies(45).  

 

 
Table 1 Machine Learning Assisted Development of Protein and Biopharmaceutical Formulations 

Sr 

No 

Aspect Description ML Techniques 

Used 

Applications / 

Examples 

Advantages Reference 

1 Protein Stability 
Prediction 

Predicts degradation, 
aggregation, or 

denaturation of 

proteins under 
different conditions. 

Supervised 
learning, 

Regression models, 

Random Forest, 
Neural Networks 

Predicting 
thermostability or 

aggregation 

hotspots 

Reduces experimental 
screening, accelerates 

stability optimization 

(46) 

2 Formulation 

Component 

Optimization 

Determines optimal 

excipients, pH, and 

buffer conditions for 
stable formulations. 

Bayesian 

Optimization, 

Decision Trees 

Predicts ideal 

buffer systems and 

excipient 
concentrations 

Minimizes trial-and-

error in formulation 

design 

(47) 

3 Protein Excipient 

Interaction 
Modeling 

Models molecular 

interactions between 
protein and stabilizers 

or adjuvants. 

Deep Learning, 

Molecular 
Dynamics + ML, 

Graph Neural 

Networks 

Predicts 

compatibility of 
surfactants or 

sugars 

Improves 

compatibility and 
prevents denaturation 

(48) 

4 High-
Throughput 

Screening Data 

Analysis 

Analyzes large 
datasets from 

automated 

formulation 
experiments. 

Clustering, 
Dimensionality 

Reduction (PCA, t-

SNE) 

Classifies stable 
vs unstable 

formulations 

Extracts meaningful 
patterns from large 

datasets 

(49) 

5 Predicting 

Aggregation and 
Viscosity 

Estimates 

formulation viscosity 
and protein 

aggregation 

propensity. 

Support Vector 

Machines (SVM), 
ANN 

 

 

Predicts solution 

behavior during 
storage 

Prevents issues during 

manufacturing and 
storage 

(50) 

6 Accelerated 
Stability Testing 

Uses ML to 
extrapolate long-term 

stability from short-
term data. 

Time-Series 
Models, Regression 

 

Predicts shelf-life 
and degradation 

kinetics 

Speeds up stability 
assessment and 

reduces cost 

(51) 

7 Protein  

Structure 

Formulation 
Relationship 

Analysis 

Links 3D protein 

structure features 

with formulation 
behavior. 

CNNs, 

Autoencoders 

Identifies 

structure-

dependent 
formulation 

sensitivity 

Enhances 

understanding of 

structure–stability 
relationship 

(52) 

8 Quality by 
Design (QbD) 

Integration 

Integrates ML in 
QbD workflows for 

design space 

identification. 

Reinforcement 
Learning, 

Predictive 

Modeling 
 

Predicts critical 
quality attributes 

(CQAs) and 

process 
parameters 

Ensures regulatory 
compliance and 

product consistency 

(53) 

9 Process 

Monitoring and 

Control 

Real-time monitoring 

of formulation and 

filling processes. 

Machine Vision, 

Predictive 

Maintenance 
Models 

Detects anomalies 

or contamination 

Improves 

manufacturing 

efficiency and safety 

(54) 

10 Data Integration 

and Knowledge 
Discovery 

Combines multi-

omics, formulation, 
and process data for 

insight generation. 

Multi-modal ML, 

Data Fusion 

Correlates 

biological data 
with formulation 

performance 

 

Enables holistic 

biopharmaceutical 
development 

 

(55) 

 

6.0 Machine Learning in Microparticle and Nanoparticle Drug Delivery 
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In recent years, there has been a significant increase 

in the utilization of machine learning (ML) for the 

design of micro - and nano-scaled drug delivery 

systems.  These systems including polymeric 

microspheres, polymeric nanoparticles, and lipid 

nanoparticles (LNPs) demonstrate intricate, 

multivariate formulation-performance correlations 

that are challenging to optimize experimentally.  

Machine learning techniques provide a data-driven 

approach to correlate formulation parameters with 

essential performance metrics, including 

encapsulation efficiency (EE), drug loading (DL), 

and drug-release kinetics(56). 

 

6.1 Analysis of polymeric and lipid-based 

nano/micro systems 

Poly(lactic-co-glycolic acid) (PLGA) and 

analogous biodegradable polyesters are the most 

extensively studied carriers for continuous release. 

Singh et al. (2021) concluded that factors such as 

polymer molecular weight, lactide: glycolide ratio, 

and end-group chemistry significantly affect the 

breakdown rate and release dynamics(57).  Simon 

et al. (2021) and Li et al. (2019) reached analogous 

conclusions, highlighting the synergistic impact of 

the particle size and polymer composition on 

diffusion-controlled release. Lipid nanoparticles 

(LNPs) and solid lipid nanoparticles (SLNs) have 

concurrently emerged for the transport of mRNA, 

siRNA, and poorly soluble small molecules(58).  

 

6.2 Predictive Models for Release Kinetics and 

Encapsulation Efficiency 

The primary machine learning objectives in 

nanoparticle formulation are (i) to predict 

encapsulation efficiency and drug loading in Table 

2, and (ii) to simulate cumulative drug release(59). 

Hosni et al. (2025) conducted a thorough analysis 

of machine learning algorithms in nanoparticle 

research, revealing that Random Forests (RF) and 

Gradient Boosting Machines (GBMs) generally 

achieve good accuracy (R² = 0.75 - 0.9) with few 

data prerequisites.  They emphasized that 

incorporating physically relevant descriptors, such 

as particle size, polymer molecular weight, and 

drug log P enhanced model generalization(60). 

Yang et al. (2021) illustrated that deep neural 

networks (DNNs) surpassed traditional models, 

including multiple linear regression (MLR), 

support-vector machines (SVM), and random 

forests (RF), to predict multi-time-point dissolution 

profiles of sustained-release tablets, attaining over 

80% accuracy, and introducing the Maximum-

Dissimilarity-Function for Intelligent Splitting 

(MD-FIS) algorithm to mitigate data leakage(61).  

Their methodological breakthroughs are currently 

being used in nanoformulations, which are 

characterized by limited data and significant 

correlations across characteristics. Seegobin et al. 

(2024) utilized ensemble learning, namely cubist 

regression and RF models, to forecast protein 

release from PLGA microspheres in microsphere 

systems, attaining an R² of approximately 0.69 and 

validating the significant influences of polymer 

molecular weight, lactic: glycolic ratio, and drug 

solubility(62). Subsequent studies by Sivadasan et 

al. (2021) expanded similar methodologies to 

hybrid polymeric-lipid particles, demonstrating that 

the incorporation of process characteristics (e.g., 

emulsification speed and solvent evaporation rate) 

enhanced the prediction of both encapsulation 

efficiency and release profiles(63).  

 

6.3 Case Studies:  Microspheres and Lipid 

Nanoparticles from PLGA 

Zawbaa et al. (2016) initiated machine learning 

modelling of macromolecule release from PLGA 

microspheres using a well-maintained dataset of 

166 formulations.  The authors evaluated nine 

methods and determined that RF had the highest 

prediction accuracy, and identified significant 

factors affecting burst release(64).  Maksimenko et 

al. (2019) utilised Gaussian Process Regression 

(GPR) to model doxorubicin-loaded PLGA 

particles, employing the model's uncertainty 

quantification to inform fresh experimental trials, 

which serves as a prelude to closed-loop 

experimental design(65). Maharajan et al. (2024) 

and associates developed an extensive LNP dataset 

comprising several formulations and utilized 

XGBoost and GPR to forecast mRNA 

encapsulation and in vitro efficacy.  The feature-

importance analysis indicated that the microfluidic 

flow-rate ratio and the percentage of ionizable 

lipids were the most significant factors(66). In a 

separate study, Correia et al. (2023) combined the 

design-of-experiments (DoE) with artificial neural 

networks (ANNs) to enhance curcumin-loaded 

solid lipid nanoparticles (SLNs), attaining 93% 

encapsulation efficiency while reducing 

experimental runs by 40% compared to traditional 

DoE methods. Together, these investigations 

together illustrate that machine learning can 

proficiently identify nonlinear parameter 

relationships that govern particle size, 

encapsulation efficiency, and release kinetics, 

attributes that would often necessitate substantial 

empirical optimization(67). 

 

6.4 Model Optimization by Feature Selection 

Algorithms 

Feature selection is crucial for improving the model 

resilience and interpretability in datasets with 

numerous associated formulation variables.  

Filtering techniques were Ge et al. (2021) 

introduced a comprehensive Fisher - RFE - 

Logistic (FRL) framework that amalgamates Fisher 

score ranking, recursive feature elimination (RFE), 

and logistic regression for biomedical datasets.  

This method swiftly removes superfluous variables 
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in formulation science, preserving only those with 

the highest predictive significance(68). Wrapper 

and embedded techniques by Figueroa Barraza et 

al. (2021) integrated internal feature selection by 

assessing DNN sensitivity coefficients(69), 

whereas Wang et al. (2022) employed (Recursive 

Feature Elimination with Cross-Validation) RFECV 

in conjunction with RF to determine the five 

principal variables (particle size, polymer ratio, 

surfactant concentration, stirring speed, and solvent 

type) that account for 85% of EE variance(70). 

Evolutionary algorithms, Sarmah et al. (2020) 

examined the application of genetic algorithms 

(GA) and particle-swarm optimisation (PSO) for 

hyperparameter tuning and variable selection in 

pharmaceutical machine learning pipelines, 

demonstrating enhancements in prediction accuracy 

ranging from 5% to 15% compared to manual 

selection. These methods collectively boost 

performance and offer mechanistic understanding 

by identifying the variables that most significantly 

influence encapsulation or release behavior(71). 

 

6.5 Comparative Examination of Model 

Precision and Overfitting Mitigation 

Deep architectures, as demonstrated by Emami et 

al. (2024) can provide enhanced predictive 

accuracy, especially for multi-output tasks such as 

whole release curves yet necessitate larger datasets 

and rigorous regularization.  Gaussian-process 

models provide valuable uncertainty quantification 

for regulatory filings. Owing to the relatively small 

size of formulation datasets (fewer than 200 items) 

and their frequent imbalance, it is imperative to 

meticulously test model generalisation(72). Hoseini 

et al. (2025) addressed this issue using the MD-FIS 

technique to generate realistic train/test splits(73). 

Vanek et al. (2017) advocated for layered cross-

validation and dropout regularisation in deep neural 

networks(74), whereas Pan et al. (2025) highlighted 

the need for ensemble averaging and data 

augmentation via physics-constrained 

simulations(75). Researchers are increasingly 

utilising explainability tools, such as SHAP 

(Shapley additive explanations) and partial-

dependence plots, to identify spurious correlations.  

The assessment criteria, that is  RMSE, MAE, and 

R², continue to be conventional metrics; however, 

Liu et al. (1997) proposed the similarity factor f₂ as 

a pertinent criterion for evaluating anticipated and 

experimental dissolution patterns in 

pharmaceuticals(76).  This criteria was 

subsequently adopted by subsequent research 

(Stevens et al., 2015) to evaluate release-profile 

predictions(77). 

 

 
Table 2 Machine Learning Applications in Microparticle and Nanoparticle Drug Delivery Systems 

Sr 

No 

Category Key Focus Area Machine Learning 

Methods 

Case Examples Benefits Reference 

1 Particle 

Engineering 

Prediction of particle 

size, morphology, and 
surface charge during 

synthesis 

Regression models, 

Random Forest, 
Neural Networks 

Predicting 

nanoparticle 
diameter and zeta 

potential from 

formulation inputs 

Enables precise 

control of 
delivery profile 

and targeting 

efficiency 

(78) 

2 Formulation 

Design 

Optimization of 

polymer, surfactant, 

and solvent ratios 

Bayesian 

Optimization, 

Decision Trees, 
Genetic Algorithms 

Designing PLGA or 

chitosan 

nanoparticles with 
high encapsulation 

Reduces 

experimental 

iterations and 
improves 

reproducibility 

(79) 

3 Encapsulation and 
Drug Loading 

Estimation of drug 
entrapment efficiency 

and loading capacity 

Artificial Neural 
Networks (ANN), 

Linear Regression, 

Support Vector 
Machines 

Predicting 
encapsulation 

efficiency for 

liposomes and 
polymeric carriers 

Enhances 
stability and 

maximizes 

payload 

(80) 

4 Controlled Drug 

Release Modeling 

Predicting release 

kinetics and diffusion 

profiles 

Support Vector 

Regression, Random 

Forest, Deep Learning 

Modeling sustained 

release of peptide-

loaded nanoparticles 

Saves time and 

supports 

formulation 
scaling 

(81) 

5 Stability and 

Storage Prediction 

Evaluation of long-

term physicochemical 
stability 

Ensemble Learning, 

Time-Series Models 
 

Predicting 

aggregation and 
crystallization in 

stored formulations 

Accelerates shelf-

life determination 
and reduces waste 

(82) 

6 Targeting and 

Delivery 
Efficiency 

Prediction of tissue 

targeting, bio-
distribution, and 

uptake efficiency 

Deep Neural 

Networks, Graph 
Neural Networks, 

Reinforcement 

Learning 

Modeling 

nanoparticle 
penetration across 

the blood–brain 

barrier 

Improves 

delivery precision 
and reduces off-

target effects 

 

(83) 

7 Safety and 

Toxicity Profiling 

Assessment of 

cytotoxicity, 

immunogenicity, and 
hemocompatibility 

QSAR Models, 

Classification 

Algorithms, Deep 
Learning 

Predicting toxicity 

of metal or 

polymeric 
nanoparticles 

Reduces in vivo 

testing and 

enhances patient 
safety 

(84) 

8 Process 

Optimization and 

Scale-Up 

Correlation of 

manufacturing 

parameters with final 
product quality 

Gaussian Process 

Regression, DoE + 

ML 
 

Optimizing spray 

drying or 

emulsification 
conditions 

Ensures batch-to-

batch consistency 

and scalability 

(85) 
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9 Image-Based 

Characterization 

Automated particle 

analysis using 

imaging data 

Convolutional Neural 

Networks (CNN), 

Image Recognition 

Automated analysis 

of SEM/TEM 

images for 

morphology 

Improves 

accuracy and 

speed of quality 

assessment 

(86) 

10 Intelligent 
Nanomedicine 

Design 

Integration of ML for 
smart and 

personalized delivery 

systems 

Multi-modal Deep 
Learning, 

Reinforcement 

Learning 

AI-guided design of 
patient-specific 

nanocarriers 

Enables precision 
therapy and 

predictive 

formulation 
design 

 

 

(87) 

 

7. Further Development of Autonomous 

Laboratories and Formulating Design 

The development of machine-learning (ML)-

augmented models for modified release drug 

delivery system (MRDDS) design represents a 

significant advancement in pharmaceutical science. 

This model allows for advanced computational 

methods to optimize formulation methodologies, 

resulting in increased delivery efficacy and patient 

adherence experiences(88). 

 

7.1 Automation and High-Throughput 

Experimentation 

The automation of MRDDS formulation involves 

the utilization of robotic systems, alongside 

analytically automated instruments to perform 

high-throughput studies. These tools provide rapid 

generation and assessment of multiple formulation 

variables, such as excipient combinations and 

processing methodologies.  By methodically 

altering parameters and gathering comprehensive 

data, researchers can more effectively uncover 

optimal formulations compared to conventional 

methods(89). 

 

7.2 The Intersection of Bayesian DL and 

Reinforcement Learning  

Bayesian deep learning offers a probabilistic 

framework to define uncertainty in prediction, 

which is useful in the complex context of MRDDS. 

Its use, in conjunction with reinforcement learning 

(RL), can allow adaptive decision making to be 

established in experimental design. RL algorithms 

learn optimal formulation techniques from 

interactions with the environment, feedback from 

RL algorithms, and accordingly update models. The 

combination of these models can provide new 

formulations that are optimized for release profiles, 

stability, and manufacturability(90). 

 

7.3 Generative Models & Discovery of New 

Formulation Spaces 

Generative models, such as generative adversarial 

networks (GANs) and variational autoencoders 

(VAEs), are often used to explore new formulation 

spaces because generative models may be able to 

identify new combinations of excipients and 

relevant processing parameters that might not have 

been previously considered. By simply learning 

from existing data, generative models can generate 

innovative formulations with better medication 

release properties(91). 

 

7.4 Active Learning in Intelligent Experimental 

Design  

Active learning (AL) is an approach in which the 

model determines which experiments would be the 

most informative to pursue next. In the context of 

MRDDS, it can be used to identify formulation 

variants that yield the greatest insight into the 

relationship between formulation factors and drug 

release behaviours. This approach reduces the 

number of experiments recquired, saving time and 

resources while accelerating the delivery of 

optimized formulations. 

 

The use of machine learning approaches in the 

design of modified release drug delivery systems is 

a groundbreaking step in pharmaceutical 

development. It enables researchers to design and 

optimize formulations that achieve specified 

therapeutic goals in an efficient manner through 

automation, probabilistic modelling, generative 

design and intelligent experimental design(92). 

 

 

8. Challenges, Limitations, and Future 

Perspectives 

The development of ML-enabled models to 

develop MRDDS presents great promise, but it 

involves many challenges and limitations that 

warrant careful consideration , as shown in  Figure 

1. 

 

8.1 Lack of Data and Reproducibility Issues 

Machine learning approaches rely on a large 

amount of high-quality data that can be used to 

predict drug release properties and formulate 

optimizations. However, data related to MRDDS 

experiments are moderately limited owing to the 

financial costs, complexity, and time required to 

conduct formulation studies. If limited, the lack of 

data may affect predictive machine learning model 

overfitting, the ability for model generalizability, 

and decrease the reproducibility of research 

findings from laboratory to laboratory. Examples of 

other variabilities that exacerbate reproducibility 

include the raw characteristics of the materials, 

laboratory conditions, and experimental protocols. 

Not only do these limitations affect transferable 
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generalizability but also limit the overall robustness 

of machine learning predictions(93). 

 

8.2 Transfer Learning and Minimal Data 

Solutions 

To respond to a lack of data, transfer learning and 

other minimal data solutions are being increasingly 

used in pharmaceutical machine learning. Transfer 

learning takes advantage of information from 

similar formulations or datasets to enhance the 

predictions of new formulations based on limited 

experimental data(94). 

 

8.3 Call for Standardisation and Open Access 

Formulation Databases 

One of the primary barriers to the development of 

ML-based MRDDS is the inconsistent reporting of 

datasets and the lack of publicly available 

databases of formulation information being 

publicly available. Non-standardized reporting of 

formulation parameters, testing procedures, and 

metrics similarly hinders the repeatability and 

comparability of machine learning studies. A 

centralized , curated and standardized database of 

formulations would allow the pharmaceutical 

community to develop richer models and facilitate 

drug delivery system innovation(95). 

 

8.4 Ethical Issues and Transparency of the 

Model  

Machine-learning models will help inform 

important resource allocations in drug 

development, it is important to consider the ethics. 

Predictive model transparency, interpretability, and 

explainability are important factors for compliance 

and confidence in AI-based decisions. 

Nontransparent models that cannot transparently 

justify their predictions have implications for 

patient safety, regulatory approval, and the 

scientific methods. There is a need for advanced 

explainable methodologies for AI to ensure 

accountability and informed decision-making in 

MRDDS development(96). 

 

8.5 Interdisciplinary Cooperation in 

Pharmaceutical AI Research 

The successful implementation of machine learning 

in MRDDS will require productive 

interdisciplinary cooperation among 

pharmaceutical scientists, formulation chemists, 

data scientists, and regulatory scientists. Integrative 

knowledge, which is area knowledge combined 

with substantial computational methods to develop 

machine learning models, promotes both 

mathematical rigor and contemporary relevance to 

the field. Interdisciplinary cooperation also support 

the design of pragmatic, effective, and safe 

formulations through a liaison between predictions 

made using computational methods and their 

applications in the pharmaceutical industry(96). 

 

 
Figure 1 Key Challenges and Strategic Solutions in Machine 

Learning–Assisted Biopharmaceutical Development. 

 

9.0 DISCUSSION: 
A comprehensive data-driven framework was 

employed to utilize empirical experimentation and 

predictive modeling to improve the drug delivery 

design process using information learned from a 

thorough literature review of the scientific 

community's use of machine learning for drug 

design. The literature reviews provided insight into 

the limitations associated with the traditional trial 

and error approach to formulating drugs, as well as 

insight into the ability of applying machine 

learning techniques to model complex, non-linear 

relationships that help to control the rate of release 

of drugs from different modified release delivery 

systems. The original research articles also 

provided direction to researchers on how to 

systematically create data to support their empirical 

findings, how to determine which variables were 

relevant to formulating their drug product, and how 

to create a dataset containing dissolution 

experiment data for their new drug product. The 

studies presented here also provided insight into 

appropriate methods for partitioning datasets and 

highlighted the importance of validation of models 

to demonstrate robustness and generalizability, 

while preventing overfitting, particularly when 

working with limited pharmaceutical datasets. 

Studies comparing several different algorithms 

have demonstrated that the performance of 

advanced machine-learning algorithms in 

predicting drug release is generally superior to both 

classical kinetic and statistical models; thus, it will 

assist in selecting the appropriate algorithms to use 

in this current project. Additionally, an important 

aspect of past research was the necessity of directly 

comparing actual experimental drug release 

profiles with those generated from model-

prediction outputs using standardised method 

performance metrics to support the predictive 

significance of the method. Overall, the 

information from both the review articles and the 

research articles included in this work will provide 

assistance in guiding future formulation 

developments toward creating an integrated 

experimental computational framework that 
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improves prediction quality, supports rational 

formulation optimisation, reduces the amount of 

time needed to develop formulations, and provides 

valuable information to decision makers involved 

in design and manufacture of modified drug 

delivery systems as noted in the relevant published 

literature. 

 

10. CONCLUSION: 
Over the past ten years, significant advancements 

have occurred in the incorporation of machine 

learning (ML) and artificial intelligence (AI) into 

pharmaceutical formulation research. From 

rudimentary statistical models to advanced deep-

learning frameworks, these technologies have 

proven capable of precisely forecasting dissolution 

kinetics, optimizing excipient proportions, and 

engineering controlled-release systems with 

unparalleled efficacies. Data-driven techniques 

have transformed formulation development from 

empirical trial-and-error to predictive, model-

informed experimentation consistent with quality-

by-design (QbD) and regulatory standards. The 

evolving paradigm for data-centric pharmaceutical 

development highlights the establishment of 

interoperable formulation databases, transparent 

and interpretable machine learning models, and the 

seamless integration of computational predictions 

with automated laboratory equipment. In the 

coming years, advancements in deep learning, 

transfer learning, and digital twins are anticipated 

to facilitate the real-time optimization of modified-

release drug systems, whereby the design, 

simulation, and manufacturing function 

synergistically within an AI-enabled framework. 

Ultimately, machine learning-driven formulation 

science is set to transform pharmaceutical 

innovation, enabling expedited, intelligent, and 

more sustainable production of personalized, 

modified-release therapies. 
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